These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 32704196)

  • 1. Deep Learning Frameworks for Diabetic Retinopathy Detection with Smartphone-based Retinal Imaging Systems.
    Hacisoftaoglu RE; Karakaya M; Sallam AB
    Pattern Recognit Lett; 2020 Jul; 135():409-417. PubMed ID: 32704196
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of smartphone-based retinal imaging systems for diabetic retinopathy detection using deep learning.
    Karakaya M; Hacisoftaoglu RE
    BMC Bioinformatics; 2020 Jul; 21(Suppl 4):259. PubMed ID: 32631221
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combining transfer learning with retinal lesion features for accurate detection of diabetic retinopathy.
    Hassan D; Gill HM; Happe M; Bhatwadekar AD; Hajrasouliha AR; Janga SC
    Front Med (Lausanne); 2022; 9():1050436. PubMed ID: 36425113
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Explainable end-to-end deep learning for diabetic retinopathy detection across multiple datasets.
    Chetoui M; Akhloufi MA
    J Med Imaging (Bellingham); 2020 Jul; 7(4):044503. PubMed ID: 32904519
    [No Abstract]   [Full Text] [Related]  

  • 5. Automatic Detection of Diabetic Retinopathy in Retinal Fundus Photographs Based on Deep Learning Algorithm.
    Li F; Liu Z; Chen H; Jiang M; Zhang X; Wu Z
    Transl Vis Sci Technol; 2019 Nov; 8(6):4. PubMed ID: 31737428
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accuracy of the smartphone-based nonmydriatic retinal camera in the detection of sight-threatening diabetic retinopathy.
    Prathiba V; Rajalakshmi R; Arulmalar S; Usha M; Subhashini R; Gilbert CE; Anjana RM; Mohan V
    Indian J Ophthalmol; 2020 Feb; 68(Suppl 1):S42-S46. PubMed ID: 31937728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Artificial intelligence based glaucoma and diabetic retinopathy detection using MATLAB - retrained AlexNet convolutional neural network.
    Arias-Serrano I; Velásquez-López PA; Avila-Briones LN; Laurido-Mora FC; Villalba-Meneses F; Tirado-Espin A; Cruz-Varela J; Almeida-Galárraga D
    F1000Res; 2023; 12():14. PubMed ID: 38826575
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimized hybrid machine learning approach for smartphone based diabetic retinopathy detection.
    Gupta S; Thakur S; Gupta A
    Multimed Tools Appl; 2022; 81(10):14475-14501. PubMed ID: 35233182
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs.
    Gulshan V; Peng L; Coram M; Stumpe MC; Wu D; Narayanaswamy A; Venugopalan S; Widner K; Madams T; Cuadros J; Kim R; Raman R; Nelson PC; Mega JL; Webster DR
    JAMA; 2016 Dec; 316(22):2402-2410. PubMed ID: 27898976
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensitivity and Specificity of Smartphone-Based Retinal Imaging for Diabetic Retinopathy: A Comparative Study.
    Sengupta S; Sindal MD; Baskaran P; Pan U; Venkatesh R
    Ophthalmol Retina; 2019 Feb; 3(2):146-153. PubMed ID: 31014763
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of Diabetic Retinopathy using Convolutional Neural Networks for Feature Extraction and Classification (DRFEC).
    Das D; Biswas SK; Bandyopadhyay S
    Multimed Tools Appl; 2022 Nov; ():1-59. PubMed ID: 36467440
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diabetic Retinopathy Screening Using Smartphone-Based Fundus Imaging in India.
    Wintergerst MWM; Mishra DK; Hartmann L; Shah P; Konana VK; Sagar P; Berger M; Murali K; Holz FG; Shanmugam MP; Finger RP
    Ophthalmology; 2020 Nov; 127(11):1529-1538. PubMed ID: 32464129
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Validation of Smartphone-Based Retinal Photography for Diabetic Retinopathy Screening.
    Bilong Y; Katte JC; Koki G; Kagmeni G; Obama OPN; Fofe HRN; Mvilongo C; Nkengfack O; Bimbai AM; Sobngwi E; Mbacham W; Mbanya JC; Bella LA; Sharma A
    Ophthalmic Surg Lasers Imaging Retina; 2019 May; 50(5):S18-S22. PubMed ID: 31100178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated Identification of Diabetic Retinopathy Using Deep Learning.
    Gargeya R; Leng T
    Ophthalmology; 2017 Jul; 124(7):962-969. PubMed ID: 28359545
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Validation of Deep Convolutional Neural Network-based algorithm for detection of diabetic retinopathy - Artificial intelligence versus clinician for screening.
    Shah P; Mishra DK; Shanmugam MP; Doshi B; Jayaraj H; Ramanjulu R
    Indian J Ophthalmol; 2020 Feb; 68(2):398-405. PubMed ID: 31957737
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of Diabetic Eye Disease from Retinal Images Using a Deep Learning Based CenterNet Model.
    Nazir T; Nawaz M; Rashid J; Mahum R; Masood M; Mehmood A; Ali F; Kim J; Kwon HY; Hussain A
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450729
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep learning innovations in diagnosing diabetic retinopathy: The potential of transfer learning and the DiaCNN model.
    Shoaib MR; Emara HM; Zhao J; El-Shafai W; Soliman NF; Mubarak AS; Omer OA; El-Samie FEA; Esmaiel H
    Comput Biol Med; 2024 Feb; 169():107834. PubMed ID: 38159396
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Validation of Smartphone Based Retinal Photography for Diabetic Retinopathy Screening.
    Rajalakshmi R; Arulmalar S; Usha M; Prathiba V; Kareemuddin KS; Anjana RM; Mohan V
    PLoS One; 2015; 10(9):e0138285. PubMed ID: 26401839
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Medios- An offline, smartphone-based artificial intelligence algorithm for the diagnosis of diabetic retinopathy.
    Sosale B; Sosale AR; Murthy H; Sengupta S; Naveenam M
    Indian J Ophthalmol; 2020 Feb; 68(2):391-395. PubMed ID: 31957735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Applying supervised contrastive learning for the detection of diabetic retinopathy and its severity levels from fundus images.
    Islam MR; Abdulrazak LF; Nahiduzzaman M; Goni MOF; Anower MS; Ahsan M; Haider J; Kowalski M
    Comput Biol Med; 2022 Jul; 146():105602. PubMed ID: 35569335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.