BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 32704445)

  • 21. Modulation of copper toxicity-induced oxidative damage by excess supply of iron in maize plants.
    Kumar P; Tewari RK; Sharma PN
    Plant Cell Rep; 2008 Feb; 27(2):399-409. PubMed ID: 17899096
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Assessment of metal exposure (uranium and copper) in fatty acids and carbohydrate profiles of Calamoceras marsupus larvae (Trichoptera) and Alnus glutinosa leaf litter.
    Tagliaferro M; Rocha C; Marques JC; Gonçalves AMM
    Sci Total Environ; 2022 Aug; 836():155613. PubMed ID: 35523349
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ecophysiological tolerance of duckweeds exposed to copper.
    Kanoun-Boulé M; Vicente JA; Nabais C; Prasad MN; Freitas H
    Aquat Toxicol; 2009 Jan; 91(1):1-9. PubMed ID: 19027182
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The influence of duckweed species diversity on ecophysiological tolerance to copper exposure.
    Zhao Z; Shi H; Duan D; Li H; Lei T; Wang M; Zhao H; Zhao Y
    Aquat Toxicol; 2015 Jul; 164():92-8. PubMed ID: 25938979
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The copper tolerance strategies and the role of antioxidative enzymes in three plant species grown on copper mine.
    Boojar MM; Goodarzi F
    Chemosphere; 2007 May; 67(11):2138-47. PubMed ID: 17316756
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Copper-induced response of physiological parameters and antioxidant enzymes in the aquatic macrophyte Potamogeton pusillus.
    Monferrán MV; Agudo JA; Pignata ML; Wunderlin DA
    Environ Pollut; 2009; 157(8-9):2570-6. PubMed ID: 19324479
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of temperature on oxidative stress defense systems, lipid peroxidation and lipoxygenase activity in Phalaenopsis.
    Ali MB; Hahn EJ; Paek KY
    Plant Physiol Biochem; 2005 Mar; 43(3):213-23. PubMed ID: 15854829
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phytotoxicity assessment of isoproturon on growth and physiology of non-targeted aquatic plant Lemna minor L. - A comparison of continuous and pulsed exposure with equivalent time-averaged concentrations.
    Varga M; Horvatić J; Žurga P; Brusić I; Moslavac M
    Aquat Toxicol; 2019 Aug; 213():105225. PubMed ID: 31220755
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of CuO nanoparticles on Lemna minor.
    Song G; Hou W; Gao Y; Wang Y; Lin L; Zhang Z; Niu Q; Ma R; Mu L; Wang H
    Bot Stud; 2016 Dec; 57(1):3. PubMed ID: 28597415
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Do heavy metals and metalloids influence the detoxification of organic xenobiotics in plants?
    Schröder P; Lyubenova L; Huber C
    Environ Sci Pollut Res Int; 2009 Nov; 16(7):795-804. PubMed ID: 19462193
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Oxidative stress, liver biotransformation and genotoxic effects induced by copper in Anguilla anguilla L.--the influence of pre-exposure to beta-naphthoflavone.
    Gravato C; Teles M; Oliveira M; Santos MA
    Chemosphere; 2006 Dec; 65(10):1821-30. PubMed ID: 16735051
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Responses of individual and combined polystyrene and polymethyl methacrylate nanoplastics on hormonal content, fluorescence/photochemistry of chlorophylls and ROS scavenging capacity in Lemna minor under arsenic-induced oxidative stress.
    Ozfidan-Konakci C; Yildiztugay E; Arikan B; Alp-Turgut FN; Turan M; Cavusoglu H; Sakalak H
    Free Radic Biol Med; 2023 Feb; 196():93-107. PubMed ID: 36657731
    [TBL] [Abstract][Full Text] [Related]  

  • 33. EDTA enhanced plant growth, antioxidant defense system, and phytoextraction of copper by Brassica napus L.
    Habiba U; Ali S; Farid M; Shakoor MB; Rizwan M; Ibrahim M; Abbasi GH; Hayat T; Ali B
    Environ Sci Pollut Res Int; 2015 Jan; 22(2):1534-44. PubMed ID: 25163559
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Effects of different concentration copper on pigment content and antioxidase system of Spirodela polyrrhiza and Lemna minor].
    Tu J; Wang X; Liu D; Li Z
    Ying Yong Sheng Tai Xue Bao; 2006 Mar; 17(3):502-6. PubMed ID: 16724751
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterizing dose response relationships: Chronic gamma radiation in Lemna minor induces oxidative stress and altered polyploidy level.
    Van Hoeck A; Horemans N; Van Hees M; Nauts R; Knapen D; Vandenhove H; Blust R
    J Environ Radioact; 2015 Dec; 150():195-202. PubMed ID: 26348936
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chronic exposure of Oreochromis niloticus to sub-lethal copper concentrations: Effects on growth, antioxidant, non-enzymatic antioxidant, oxidative stress and non-specific immune responses.
    Gopi N; Vijayakumar S; Thaya R; Govindarajan M; Alharbi NS; Kadaikunnan S; Khaled JM; Al-Anbr MN; Vaseeharan B
    J Trace Elem Med Biol; 2019 Sep; 55():170-179. PubMed ID: 31345355
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Exogenous 24-Epibrassinolide alleviates oxidative damage from copper stress in grape (Vitis vinifera L.) cuttings.
    Zhou YL; Huo SF; Wang LT; Meng JF; Zhang ZW; Xi ZM
    Plant Physiol Biochem; 2018 Sep; 130():555-565. PubMed ID: 30099273
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparative effects of ascobin and glutathione on copper homeostasis and oxidative stress metabolism in mitigation of copper toxicity in rice.
    Tahjib-Ul-Arif M; Sohag AAM; Mostofa MG; Polash MAS; Mahamud AGMSU; Afrin S; Hossain MA; Hossain MA; Murata Y; Tran LP
    Plant Biol (Stuttg); 2021 May; 23 Suppl 1():162-169. PubMed ID: 33236382
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Differential effect of UV-B radiation on growth, oxidative stress and ascorbate-glutathione cycle in two cyanobacteria under copper toxicity.
    Singh VP; Srivastava PK; Prasad SM
    Plant Physiol Biochem; 2012 Dec; 61():61-70. PubMed ID: 23063802
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Anguilla anguilla L. oxidative stress biomarkers responses to copper exposure with or without beta-naphthoflavone pre-exposure.
    Ahmad I; Oliveira M; Pacheco M; Santos MA
    Chemosphere; 2005 Oct; 61(2):267-75. PubMed ID: 16168750
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.