These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 32704865)
1. How did Lofgreen and Garrett do the math? Oltjen JW Transl Anim Sci; 2019 Jun; 3(3):1011-1017. PubMed ID: 32704865 [TBL] [Abstract][Full Text] [Related]
2. BOARD-INVITED REVIEW: Efficiency of converting digestible energy to metabolizable energy and reevaluation of the California Net Energy System maintenance requirements and equations for predicting dietary net energy values for beef cattle. Galyean ML; Cole NA; Tedeschi LO; Branine ME J Anim Sci; 2016 Apr; 94(4):1329-41. PubMed ID: 27135993 [TBL] [Abstract][Full Text] [Related]
3. Predicting efficiency of use of metabolizable energy to net energy for gain and maintenance of Nellore cattle. Marcondes MI; Tedeschi LO; Valadares Filho SC; Gionbelli MP J Anim Sci; 2013 Oct; 91(10):4887-98. PubMed ID: 23978609 [TBL] [Abstract][Full Text] [Related]
4. Energy and protein requirements for growth and maintenance of F1 Nellore x Red Angus bulls, steers, and heifers. Chizzotti ML; Valadares Filho SC; Tedeschi LO; Chizzotti FH; Carstens GE J Anim Sci; 2007 Aug; 85(8):1971-81. PubMed ID: 17504963 [TBL] [Abstract][Full Text] [Related]
5. Predicting metabolizable energy from digestible energy for growing and finishing beef cattle and relationships to the prediction of methane. Hales KE; Coppin CA; Smith ZK; McDaniel ZS; Tedeschi LO; Cole NA; Galyean ML J Anim Sci; 2022 Mar; 100(3):. PubMed ID: 35034122 [TBL] [Abstract][Full Text] [Related]
6. Performance by feedlot steers and heifers: daily gain, mature body weight, dry matter intake, and dietary energetics. Zinn RA; Barreras A; Owens FN; Plascencia A J Anim Sci; 2008 Oct; 86(10):2680-9. PubMed ID: 18539825 [TBL] [Abstract][Full Text] [Related]
7. Energy and protein requirements of Holstein × Gyr crossbred heifers. Castro MMD; Albino RL; Rodrigues JPP; Sguizzato ALL; Santos MMF; Rotta PP; Caton JS; Moraes LEFD; Silva FF; Marcondes MI Animal; 2020 Sep; 14(9):1857-1866. PubMed ID: 32248874 [TBL] [Abstract][Full Text] [Related]
8. Effects of energy intake on energetic efficiency and body composition of beef steers differing in size at maturity. Old CA; Garrett WN J Anim Sci; 1987 Nov; 65(5):1371-80. PubMed ID: 3693163 [TBL] [Abstract][Full Text] [Related]
9. Growth, carcass quality, and protein and energy metabolism in beef cattle with different growth potentials and residual feed intakes. Castro Bulle FC; Paulino PV; Sanches AC; Sainz RD J Anim Sci; 2007 Apr; 85(4):928-36. PubMed ID: 17178805 [TBL] [Abstract][Full Text] [Related]
10. A dynamic model of metabolizable energy utilization in growing and mature cattle. III. Model evaluation. Williams CB; Jenkins TG J Anim Sci; 2003 Jun; 81(6):1390-8. PubMed ID: 12817485 [TBL] [Abstract][Full Text] [Related]
11. Determination of maintenance energy requirement and responses of dry ewes to dietary inclusion of lucerne versus concentrate meal. Wang CM; Yan T; Xie KL; Chang SH; Zhang C; Hou FJ Animal; 2021 May; 15(5):100200. PubMed ID: 34029796 [TBL] [Abstract][Full Text] [Related]
12. A revised model of energy transactions and body composition in sheep. Oddy VH; Dougherty JCH; Evered M; Clayton EH; Oltjen JW J Anim Sci; 2024 Jan; 102():. PubMed ID: 38051588 [TBL] [Abstract][Full Text] [Related]
13. Effect of lasalocid on feedlot performance and energy partitioning in cattle. Delfino J; Mathison GW; Smith MW J Anim Sci; 1988 Jan; 66(1):136-50. PubMed ID: 3366703 [TBL] [Abstract][Full Text] [Related]
14. Earlier Metabolizable Energy Intake Level Influences Heat Production during a Following 3-Day Fast in Laying Hens. Ning D; Guo YM; Wang YW; Peng YZ Asian-Australas J Anim Sci; 2013 Apr; 26(4):558-63. PubMed ID: 25049823 [TBL] [Abstract][Full Text] [Related]
15. Energy costs of feeding excess protein from corn-based by-products to finishing cattle. Jennings JS; Meyer BE; Guiroy PJ; Cole NA J Anim Sci; 2018 Mar; 96(2):653-669. PubMed ID: 29390094 [TBL] [Abstract][Full Text] [Related]
16. Efficiency of use of metabolizable energy for body weight gain in pasture-based, nonlactating dairy cows. Mandok KM; Kay JK; Greenwood SL; McNamara JP; Crookenden M; White R; Shields S; Edwards GR; Roche JR J Dairy Sci; 2014 Jul; 97(7):4639-48. PubMed ID: 24835974 [TBL] [Abstract][Full Text] [Related]
17. Energy and protein requirements of crossbred (Holstein × Gyr) growing bulls. Oss DB; Machado FS; Tomich TR; Pereira LGR; Campos MM; Castro MMD; da Silva TE; Marcondes MI J Dairy Sci; 2017 Apr; 100(4):2603-2613. PubMed ID: 28161164 [TBL] [Abstract][Full Text] [Related]
18. Estimation of the net energy requirements for maintenance in growing and finishing pigs. Zhang GF; Liu DW; Wang FL; Li DF J Anim Sci; 2014 Jul; 92(7):2987-95. PubMed ID: 24802038 [TBL] [Abstract][Full Text] [Related]
19. Double-muscled and conventional cattle have the same net energy requirements if these are related to mature and current body protein mass, and to gain composition. Schiavon S; Bittante G J Anim Sci; 2012 Nov; 90(11):3973-87. PubMed ID: 22829619 [TBL] [Abstract][Full Text] [Related]
20. Prediction of the metabolizable energy requirements of free-range laying hens. Brainer MM; Rabello CB; Santos MJ; Lopes CC; Ludke JV; Silva JH; Lima RA J Anim Sci; 2016 Jan; 94(1):117-24. PubMed ID: 26812318 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]