These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 32704993)

  • 1. The relationship of pork carcass weight and leanness parameters in the Ontario commercial pork industry.
    Barducci RS; Zhou ZY; Wormsbecher L; Roehrig C; Tulpan D; Bohrer BM
    Transl Anim Sci; 2020 Jan; 4(1):331-338. PubMed ID: 32704993
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of an advanced automated ultrasonic scanner (AutoFom III) and a handheld optical probe (Destron PG-100) to determine lean yield in pork carcasses.
    Dorleku JB; Wormsbecher L; Christensen M; Campbell CP; Mandell IB; Bohrer BM
    J Anim Sci; 2023 Jan; 101():. PubMed ID: 36807699
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An update of the predicted lean yield equation for the Destron PG-100 optical grading probe.
    Bohrer BM; Wang Y; Dorleku JB; Campbell CP; Mandell IB
    J Anim Sci; 2023 Jan; 101():. PubMed ID: 37317891
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The relationship between different pork carcass lean yield definitions and the market carcass value.
    Marcoux M; Pomar C; Faucitano L; Brodeur C
    Meat Sci; 2007 Jan; 75(1):94-102. PubMed ID: 22063416
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using current on-line carcass evaluation parameters to estimate boneless and bone-in pork carcass yield as influenced by trim level.
    Berg EP; Grams DW; Miller RK; Wise JW; Forrest JC; Savell JW
    J Anim Sci; 1999 Aug; 77(8):1977-84. PubMed ID: 10461971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of the prediction of alternative measures of pork carcass composition by three optical probes.
    Schinckel AP; Wagner JR; Forrest JC; Einstein ME
    J Anim Sci; 2010 Feb; 88(2):767-94. PubMed ID: 19820040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of the E+V video image analysis system as a predictor of pork carcass meat yield.
    McClure EK; Scanga JA; Belk KE; Smith GC
    J Anim Sci; 2003 May; 81(5):1193-201. PubMed ID: 12772846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of lean and fat composition in swine carcasses from ham area measurements with image analysis.
    Jia J; Schinckel AP; Forrest JC; Chen W; Wagner JR
    Meat Sci; 2010 Jun; 85(2):240-4. PubMed ID: 20374892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of procedures to predict fat-free lean in swine carcasses.
    Johnson RK; Berg EP; Goodwin R; Mabry JW; Miller RK; Robison OW; Sellers H; Tokach MD
    J Anim Sci; 2004 Aug; 82(8):2428-41. PubMed ID: 15318744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic parameters for ultrasound and carcass measures of yield and quality among replacement and slaughter beef cattle.
    Crews DH; Kemp RA
    J Anim Sci; 2001 Dec; 79(12):3008-20. PubMed ID: 11811454
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electromagnetic scanning of pork carcasses in an on-line industrial configuration.
    Berg EP; Forrest JC; Fisher JE
    J Anim Sci; 1994 Oct; 72(10):2642-52. PubMed ID: 7883623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Composition analysis of pork carcasses by dual-energy x-ray absorptiometry.
    Mitchell AD; Scholz AM; Pursel VG; Evock-Clover CM
    J Anim Sci; 1998 Aug; 76(8):2104-14. PubMed ID: 9734860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation of carcass composition by ultrasound measurements in 4 anatomical locations of 3 commercial categories of lamb.
    Ripoll G; Joy M; Sanz A
    J Anim Sci; 2010 Oct; 88(10):3409-18. PubMed ID: 20562368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carcass traits, cut yields, and compositional end points in high-lean-yielding pork carcasses: effects of 10th rib backfat and loin eye area.
    Pringle TD; Williams SE
    J Anim Sci; 2001 Jan; 79(1):115-21. PubMed ID: 11204691
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pork carcass evaluation with an automated and computerized ultrasonic system.
    Liu Y; Stouffer JR
    J Anim Sci; 1995 Jan; 73(1):29-38. PubMed ID: 7601745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Halothane genotype and pork quality. 1. Carcass and meat quality characteristics of three halothane genotypes.
    Fisher P; Mellett FD; Hoffman LC
    Meat Sci; 2000 Feb; 54(2):97-105. PubMed ID: 22060604
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of dietary lysine and energy density on performance and carcass characteristics of finishing pigs fed ractopamine.
    Apple JK; Maxwell CV; Brown DC; Friesen KG; Musser RE; Johnson ZB; Armstrong TA
    J Anim Sci; 2004 Nov; 82(11):3277-87. PubMed ID: 15542474
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison of carcass characteristics, carcass cutting yields, and meat quality of barrows and gilts.
    Bohrer BM; Dorleku JB; Campbell CP; Duarte MS; Mandell IB
    Transl Anim Sci; 2023; 7(1):txad079. PubMed ID: 37649648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual X-ray absorptiometry accurately predicts carcass composition from live sheep and chemical composition of live and dead sheep.
    Pearce KL; Ferguson M; Gardner G; Smith N; Greef J; Pethick DW
    Meat Sci; 2009 Jan; 81(1):285-93. PubMed ID: 22063997
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ractopamine treatment biases in the prediction of pork carcass composition.
    Schinckel AP; Herr CT; Richert BT; Forrest JC; Einstein ME
    J Anim Sci; 2003 Jan; 81(1):16-28. PubMed ID: 12597368
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.