These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 32705093)

  • 21. Photoresponsive gels prepared by ring-opening metathesis polymerization.
    Gumbley P; Hu X; Lawrence JA; Thomas SW
    Macromol Rapid Commun; 2013 Dec; 34(23-24):1838-43. PubMed ID: 24214015
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Practical Route for Catalytic Ring-Opening Metathesis Polymerization.
    Mandal I; Kilbinger AFM
    JACS Au; 2022 Dec; 2(12):2800-2808. PubMed ID: 36590270
    [TBL] [Abstract][Full Text] [Related]  

  • 23. End-functionalized ROMP polymers for Biomedical Applications.
    Madkour AE; Koch AH; Lienkamp K; Tew GN
    Macromolecules; 2010 May; 43(10):4557-4561. PubMed ID: 21499549
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ring-Opening Metathesis Polymerization in Aqueous Media Using a Macroinitiator Approach.
    Foster JC; Varlas S; Blackman LD; Arkinstall LA; O'Reilly RK
    Angew Chem Int Ed Engl; 2018 Aug; 57(33):10672-10676. PubMed ID: 29944771
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Facile one-pot synthesis of brush polymers through tandem catalysis using Grubbs' catalyst for both ring-opening metathesis and atom transfer radical polymerizations.
    Cheng C; Khoshdel E; Wooley KL
    Nano Lett; 2006 Aug; 6(8):1741-6. PubMed ID: 16895366
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enol Ethers Are Effective Monomers for Ring-Opening Metathesis Polymerization: Synthesis of Degradable and Depolymerizable Poly(2,3-dihydrofuran).
    Feist JD; Xia Y
    J Am Chem Soc; 2020 Jan; 142(3):1186-1189. PubMed ID: 31880922
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Facile synthesis of brush poly(phosphoamidate)s via one-pot tandem ring-opening metathesis polymerization and atom transfer radical polymerization.
    Ding L; Qiu J; Wei J; Zhu Z
    Macromol Rapid Commun; 2014 Sep; 35(17):1509-15. PubMed ID: 24729161
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Redox-Robust Pentamethylferrocene Polymers and Supramolecular Polymers, and Controlled Self-Assembly of Pentamethylferricenium Polymer-Embedded Ag, AgI, and Au Nanoparticles.
    Gu H; Ciganda R; Castel P; Vax A; Gregurec D; Irigoyen J; Moya S; Salmon L; Zhao P; Ruiz J; Hernández R; Astruc D
    Chemistry; 2015 Dec; 21(50):18177-86. PubMed ID: 26494439
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synthesis of Functional Polyacetylenes via Cyclopolymerization of Diyne Monomers with Grubbs-type Catalysts.
    Peterson GI; Yang S; Choi TL
    Acc Chem Res; 2019 Apr; 52(4):994-1005. PubMed ID: 30689346
    [TBL] [Abstract][Full Text] [Related]  

  • 30. α,ω-Epoxide, Oxetane, and Dithiocarbonate Telechelic Copolyolefins: Access by Ring-Opening Metathesis/Cross-Metathesis Polymerization (ROMP/CM) of Cycloolefins in the Presence of Functional Symmetric Chain-Transfer Agents.
    Vanbiervliet E; Fouquay S; Michaud G; Simon F; Carpentier JF; Guillaume SM
    Polymers (Basel); 2018 Nov; 10(11):. PubMed ID: 30961166
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Protein ROMP: Aqueous Graft-from Ring-Opening Metathesis Polymerization.
    Isarov SA; Pokorski JK
    ACS Macro Lett; 2015 Sep; 4(9):969-973. PubMed ID: 35596466
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Crosslinked Polydicyclopentadiene Nanoparticles via Ring-Opening Metathesis Polymerization-Induced Self-Assembly Approach.
    Mei H; Zhao B; Wang H; Zheng S
    Macromol Rapid Commun; 2021 Jul; 42(14):e2100155. PubMed ID: 34057258
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Probing Catalyst Degradation in Metathesis of Internal Olefins: Expanding Access to Amine-Tagged ROMP Polymers.
    Cormier SK; Fogg DE
    ACS Catal; 2023 Sep; 13(17):11834-11840. PubMed ID: 37671179
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Shape-tunable polymer nodules grown from liposomes via ring-opening metathesis polymerization.
    Jarroux N; Keller P; Mingotaud AF; Mingotaud C; Sykes C
    J Am Chem Soc; 2004 Dec; 126(49):15958-9. PubMed ID: 15584718
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanistic and Kinetic Studies of the Ring Opening Metathesis Polymerization of Norbornenyl Monomers by a Grubbs Third Generation Catalyst.
    Hyatt MG; Walsh DJ; Lord RL; Andino Martinez JG; Guironnet D
    J Am Chem Soc; 2019 Nov; 141(44):17918-17925. PubMed ID: 31651157
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cascade polymerizations: recent developments in the formation of polymer repeat units by cascade reactions.
    Peterson GI; Choi TL
    Chem Sci; 2020 Apr; 11(19):4843-4854. PubMed ID: 34122940
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Remote exo/endo selectivity in selective monohydrolysis of dialkyl bicyclo[2.2.1]heptane-2,3-dicarboxylate derivatives.
    Niwayama S; Cho H; Zabet-Moghaddam M; Whittlesey BR
    J Org Chem; 2010 Jun; 75(11):3775-80. PubMed ID: 20443611
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Statistical Ring Opening Metathesis Copolymerization of Norbornene and Cyclopentene by Grubbs' 1st-Generation Catalyst.
    Nikovia C; Maroudas AP; Goulis P; Tzimis D; Paraskevopoulou P; Pitsikalis M
    Molecules; 2015 Aug; 20(9):15597-615. PubMed ID: 26343620
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Branched Polymers via ROMP of Termimers.
    Hanik N; Kilbinger AF
    Macromol Rapid Commun; 2016 Mar; 37(6):532-8. PubMed ID: 26787265
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Expanding the materials space of DNA via organic-phase ring-opening metathesis polymerization.
    Tan X; Lu H; Sun Y; Chen X; Wang D; Jia F; Zhang K
    Chem; 2019 Jun; 5(6):1584-1596. PubMed ID: 31903440
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.