These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 32705870)

  • 1. Hierarchically Structured Laser-Induced Graphene for Enhanced Boiling on Flexible Substrates.
    Kong D; Kang M; Kim KY; Jang J; Cho J; In JB; Lee H
    ACS Appl Mater Interfaces; 2020 Aug; 12(33):37784-37792. PubMed ID: 32705870
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sulfur-Doped Laser-Induced Porous Graphene Derived from Polysulfone-Class Polymers and Membranes.
    Singh SP; Li Y; Zhang J; Tour JM; Arnusch CJ
    ACS Nano; 2018 Jan; 12(1):289-297. PubMed ID: 29241007
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Boosting the Heat Dissipation Performance of Graphene/Polyimide Flexible Carbon Film via Enhanced Through-Plane Conductivity of 3D Hybridized Structure.
    Li Y; Zhu Y; Jiang G; Cano ZP; Yang J; Wang J; Liu J; Chen X; Chen Z
    Small; 2020 Feb; 16(8):e1903315. PubMed ID: 31999051
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced pool-boiling heat transfer and critical heat flux on femtosecond laser processed stainless steel surfaces.
    Kruse CM; Anderson T; Wilson C; Zuhlke C; Alexander D; Gogos G; Ndao S
    Int J Heat Mass Transf; 2015 Mar; 82():109-116. PubMed ID: 30449897
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Programmable patterning fabrication of laser-induced graphene-MXene composite electrodes for flexible planar supercapacitors.
    Fu XY; Zhang YY; Ma CJ; Jiang HB
    Opt Lett; 2022 Mar; 47(6):1502-1505. PubMed ID: 35290349
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Resolution Laser-Induced Graphene. Flexible Electronics beyond the Visible Limit.
    Stanford MG; Zhang C; Fowlkes JD; Hoffman A; Ivanov IN; Rack PD; Tour JM
    ACS Appl Mater Interfaces; 2020 Mar; 12(9):10902-10907. PubMed ID: 32039573
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aluminum Micropillar Surfaces with Hierarchical Micro- and Nanoscale Features for Enhancement of Boiling Heat Transfer Coefficient and Critical Heat Flux.
    Hadžić A; Može M; Zupančič M; Golobič I
    Nanomaterials (Basel); 2024 Apr; 14(8):. PubMed ID: 38668161
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Water Peel-Off Transfer of Electronically Enhanced, Paper-Based Laser-Induced Graphene for Wearable Electronics.
    Pinheiro T; Correia R; Morais M; Coelho J; Fortunato E; Sales MGF; Marques AC; Martins R
    ACS Nano; 2022 Dec; 16(12):20633-20646. PubMed ID: 36383513
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrothermal Performance of Heaters Based on Laser-Induced Graphene on Aramid Fabric.
    Naseri I; Ziaee M; Nilsson ZN; Lustig DR; Yourdkhani M
    ACS Omega; 2022 Feb; 7(4):3746-3757. PubMed ID: 35128283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlling Thermoelectric Properties of Laser-Induced Graphene on Polyimide.
    Kincal C; Solak N
    Nanomaterials (Basel); 2024 May; 14(10):. PubMed ID: 38786835
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrahigh Flux Thin Film Boiling Heat Transfer Through Nanoporous Membranes.
    Wang Q; Chen R
    Nano Lett; 2018 May; 18(5):3096-3103. PubMed ID: 29624394
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Laser-Induced Graphene.
    Ye R; James DK; Tour JM
    Acc Chem Res; 2018 Jul; 51(7):1609-1620. PubMed ID: 29924584
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laser-Induced Graphene by Multiple Lasing: Toward Electronics on Cloth, Paper, and Food.
    Chyan Y; Ye R; Li Y; Singh SP; Arnusch CJ; Tour JM
    ACS Nano; 2018 Mar; 12(3):2176-2183. PubMed ID: 29436816
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Laser-Induced Graphene for Flexible and Embeddable Gas Sensors.
    Stanford MG; Yang K; Chyan Y; Kittrell C; Tour JM
    ACS Nano; 2019 Mar; 13(3):3474-3482. PubMed ID: 30848881
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laser-Engineered Microcavity Surfaces with a Nanoscale Superhydrophobic Coating for Extreme Boiling Performance.
    Može M; Senegačnik M; Gregorčič P; Hočevar M; Zupančič M; Golobič I
    ACS Appl Mater Interfaces; 2020 May; 12(21):24419-24431. PubMed ID: 32352743
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Paper-based laser-induced graphene for sustainable and flexible microsupercapacitor applications.
    Coelho J; Correia RF; Silvestre S; Pinheiro T; Marques AC; Correia MRP; Pinto JV; Fortunato E; Martins R
    Mikrochim Acta; 2022 Dec; 190(1):40. PubMed ID: 36585475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced heat transfer is dependent on thickness of graphene films: the heat dissipation during boiling.
    Ahn HS; Kim JM; Kim T; Park SC; Kim JM; Park Y; Yu DI; Hwang KW; Jo H; Park HS; Kim H; Kim MH
    Sci Rep; 2014 Sep; 4():6276. PubMed ID: 25182076
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hybrid Graphene and Single-Walled Carbon Nanotube Films for Enhanced Phase-Change Heat Transfer.
    Seo H; Yun HD; Kwon SY; Bang IC
    Nano Lett; 2016 Feb; 16(2):932-8. PubMed ID: 26731547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flexible Laser-Induced Graphene for Nitrogen Sensing in Soil.
    Garland NT; McLamore ES; Cavallaro ND; Mendivelso-Perez D; Smith EA; Jing D; Claussen JC
    ACS Appl Mater Interfaces; 2018 Nov; 10(45):39124-39133. PubMed ID: 30284450
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanosecond Laser-Textured Copper Surfaces Hydrophobized with Self-Assembled Monolayers for Enhanced Pool Boiling Heat Transfer.
    Može M; Zupančič M; Steinbücher M; Golobič I; Gjerkeš H
    Nanomaterials (Basel); 2022 Nov; 12(22):. PubMed ID: 36432318
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.