BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 32705957)

  • 1. Characterisation and composition identification of waste-derived fuels obtained from municipal solid waste using thermogravimetry: A review.
    Gerassimidou S; Velis CA; Williams PT; Komilis D
    Waste Manag Res; 2020 Sep; 38(9):942-965. PubMed ID: 32705957
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of coal/solid recovered fuel (SRF) with coal/refuse derived fuel (RDF) in a fluidized bed reactor.
    Wagland ST; Kilgallon P; Coveney R; Garg A; Smith R; Longhurst PJ; Pollard SJ; Simms N
    Waste Manag; 2011 Jun; 31(6):1176-83. PubMed ID: 21288710
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of fuel value and combustion characteristics of two different RDF samples.
    Sever Akdağ A; Atımtay A; Sanin FD
    Waste Manag; 2016 Jan; 47(Pt B):217-24. PubMed ID: 26360232
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of refuse derived fuel samples prepared from municipal solid waste in Vellore, India.
    Thawani B; Mahanty B; Behera SK
    Environ Technol; 2022 May; 43(12):1843-1852. PubMed ID: 33323041
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New techniques for the characterization of refuse-derived fuels and solid recovered fuels.
    Rotter VS; Lehmann A; Marzi T; Möhle E; Schingnitz D; Hoffmann G
    Waste Manag Res; 2011 Feb; 29(2):229-36. PubMed ID: 20392788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Municipal solid waste landfill age and refuse-derived fuel.
    Chiou IJ; Chen CH
    Waste Manag Res; 2021 Apr; 39(4):601-606. PubMed ID: 33028175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactive effect of the sorted components of solid recovered fuel manufactured from municipal solid waste by thermogravimetric and kinetic analysis.
    Wu L; Jiang X; Lv G; Li X; Yan J
    Waste Manag; 2020 Feb; 102():270-280. PubMed ID: 31698229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elemental balance of SRF production process: solid recovered fuel produced from municipal solid waste.
    Nasrullah M; Vainikka P; Hannula J; Hurme M; Oinas P
    Waste Manag Res; 2016 Jan; 34(1):38-46. PubMed ID: 26608898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The application of SRF vs. RDF classification and specifications to the material flows of two mechanical-biological treatment plants of Rome: Comparison and implications.
    Di Lonardo MC; Franzese M; Costa G; Gavasci R; Lombardi F
    Waste Manag; 2016 Jan; 47(Pt B):195-205. PubMed ID: 26243051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficiency of municipal packaging waste recovery chain and suitability of separated residual waste fractions for use in alternative fuels production.
    Tomić T; Kremer I; Vecchio Ciprioti S; Schneider DR
    J Environ Manage; 2022 Nov; 322():116056. PubMed ID: 36070647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sample preparation for thermo-gravimetric determination and thermo-gravimetric characterization of refuse derived fuel.
    Robinson T; Bronson B; Gogolek P; Mehrani P
    Waste Manag; 2016 Feb; 48():265-274. PubMed ID: 26611398
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energetic utilisation of refuse derived fuels from landfill mining.
    Rotheut M; Quicker P
    Waste Manag; 2017 Apr; 62():101-117. PubMed ID: 28228358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterisation of major component leaching and buffering capacity of RDF incineration and gasification bottom ash in relation to reuse or disposal scenarios.
    Rocca S; van Zomeren A; Costa G; Dijkstra JJ; Comans RN; Lombardi F
    Waste Manag; 2012 Apr; 32(4):759-68. PubMed ID: 22226920
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pyrolysis technologies for municipal solid waste: a review.
    Chen D; Yin L; Wang H; He P
    Waste Manag; 2014 Dec; 34(12):2466-86. PubMed ID: 25256662
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of an industrial solid waste processing line to produce refuse-derived fuel.
    Infiesta LR; Ferreira CRN; Trovó AG; Borges VL; Carvalho SR
    J Environ Manage; 2019 Apr; 236():715-719. PubMed ID: 30772728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pyrolysis and gasification of typical components in wastes with macro-TGA.
    Meng A; Chen S; Long Y; Zhou H; Zhang Y; Li Q
    Waste Manag; 2015 Dec; 46():247-56. PubMed ID: 26318422
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The evaluation of energy consumption in transportation and processing of municipal waste for recovery in a waste-to-energy plant: a case study of Poland.
    Nowakowski P; Wala M
    Environ Sci Pollut Res Int; 2023 Jan; 30(4):8809-8821. PubMed ID: 35661309
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Refuse-derived fuel potential production for co-combustion in the cement industry in Algeria.
    Sakri A; Aouabed A; Nassour A; Nelles M
    Waste Manag Res; 2021 Sep; 39(9):1174-1184. PubMed ID: 33407010
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms contributing to the thermal analysis of waste incineration bottom ash and quantification of different carbon species.
    Rocca S; van Zomeren A; Costa G; Dijkstra JJ; Comans RN; Lombardi F
    Waste Manag; 2013 Feb; 33(2):373-81. PubMed ID: 23246084
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Origins of major and minor ash constituents of solid recovered fuel for co-processing in the cement industry.
    Viczek SA; Aldrian A; Pomberger R; Sarc R
    Waste Manag; 2021 May; 126():423-432. PubMed ID: 33836393
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.