BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 32705997)

  • 1. An optically transparent multi-electrode array for combined electrophysiology and optophysiology at the mesoscopic scale.
    Brosch M; Deckert M; Rathi S; Takagaki K; Weidner T; Ohl FW; Schmidt B; Lippert MT
    J Neural Eng; 2020 Jul; 17(4):046014. PubMed ID: 32705997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication and utility of a transparent graphene neural electrode array for electrophysiology, in vivo imaging, and optogenetics.
    Park DW; Brodnick SK; Ness JP; Atry F; Krugner-Higby L; Sandberg A; Mikael S; Richner TJ; Novello J; Kim H; Baek DH; Bong J; Frye ST; Thongpang S; Swanson KI; Lake W; Pashaie R; Williams JC; Ma Z
    Nat Protoc; 2016 Nov; 11(11):2201-2222. PubMed ID: 27735935
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Opto- μECoG array: a hybrid neural interface with transparent μECoG electrode array and integrated LEDs for optogenetics.
    Kwon KY; Sirowatka B; Weber A; Li W
    IEEE Trans Biomed Circuits Syst; 2013 Oct; 7(5):593-600. PubMed ID: 24144668
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Graphene-based carbon-layered electrode array technology for neural imaging and optogenetic applications.
    Park DW; Schendel AA; Mikael S; Brodnick SK; Richner TJ; Ness JP; Hayat MR; Atry F; Frye ST; Pashaie R; Thongpang S; Ma Z; Williams JC
    Nat Commun; 2014 Oct; 5():5258. PubMed ID: 25327513
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graphene neural interfaces for artifact free optogenetics.
    Hongming Lyu ; Xin Liu ; Rogers N; Gilja V; Kuzum D
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4204-4207. PubMed ID: 28269210
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A fully transparent, flexible PEDOT:PSS-ITO-Ag-ITO based microelectrode array for ECoG recording.
    Yang W; Gong Y; Yao CY; Shrestha M; Jia Y; Qiu Z; Fan QH; Weber A; Li W
    Lab Chip; 2021 Mar; 21(6):1096-1108. PubMed ID: 33522526
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stretchable Transparent Electrode Arrays for Simultaneous Electrical and Optical Interrogation of Neural Circuits in Vivo.
    Zhang J; Liu X; Xu W; Luo W; Li M; Chu F; Xu L; Cao A; Guan J; Tang S; Duan X
    Nano Lett; 2018 May; 18(5):2903-2911. PubMed ID: 29608857
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultraflexible Transparent Oxide/Metal/Oxide Stack Electrode with Low Sheet Resistance for Electrophysiological Measurements.
    Jimbo Y; Matsuhisa N; Lee W; Zalar P; Jinno H; Yokota T; Sekino M; Someya T
    ACS Appl Mater Interfaces; 2017 Oct; 9(40):34744-34750. PubMed ID: 28933150
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TetrODrive: an open-source microdrive for combined electrophysiology and optophysiology.
    Brosch M; Vlasenko A; Ohl FW; Lippert MT
    J Neural Eng; 2021 Apr; 18(4):. PubMed ID: 33908896
    [No Abstract]   [Full Text] [Related]  

  • 10. In vitro biocompatibility and electrical stability of thick-film platinum/gold alloy electrodes printed on alumina.
    Carnicer-Lombarte A; Lancashire HT; Vanhoestenberghe A
    J Neural Eng; 2017 Jun; 14(3):036012. PubMed ID: 28272027
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A transparent epidural electrode array for use in conjunction with optical imaging.
    Kunori N; Takashima I
    J Neurosci Methods; 2015 Aug; 251():130-7. PubMed ID: 26049111
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of flexible ECoG electrode arrays for chronic recording in awake rats.
    Yeager JD; Phillips DJ; Rector DM; Bahr DF
    J Neurosci Methods; 2008 Aug; 173(2):279-85. PubMed ID: 18640155
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polymer Skulls With Integrated Transparent Electrode Arrays for Cortex-Wide Opto-Electrophysiological Recordings.
    Donaldson PD; Navabi ZS; Carter RE; Fausner SML; Ghanbari L; Ebner TJ; Swisher SL; Kodandaramaiah SB
    Adv Healthc Mater; 2022 Sep; 11(18):e2200626. PubMed ID: 35869830
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Compact Closed-Loop Optogenetics System Based on Artifact-Free Transparent Graphene Electrodes.
    Liu X; Lu Y; Iseri E; Shi Y; Kuzum D
    Front Neurosci; 2018; 12():132. PubMed ID: 29559885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An optoelectronic neural interface approach for precise superposition of optical and electrical stimulation in flexible array structures.
    Eickenscheidt M; Herrmann T; Weisshap M; Mittnacht A; Rudmann L; Zeck G; Stieglitz T
    Biosens Bioelectron; 2022 Jun; 205():114090. PubMed ID: 35227972
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multimodal Electrocorticogram Active Electrode Array Based on Zinc Oxide-Thin Film Transistors.
    Zhang F; Zhang L; Xia J; Zhao W; Dong S; Ye Z; Pan G; Luo J; Zhang S
    Adv Sci (Weinh); 2023 Jan; 10(2):e2204467. PubMed ID: 36403238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of Durability of Transparent Graphene Electrodes Fabricated on Different Flexible Substrates for Chronic In Vivo Experiments.
    Ding D; Lu Y; Zhao R; Liu X; De-Eknamkul C; Ren C; Mehrsa A; Komiyama T; Kuzum D
    IEEE Trans Biomed Eng; 2020 Nov; 67(11):3203-3210. PubMed ID: 32191878
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly conductive transparent organic electrodes with multilayer structures for rigid and flexible optoelectronics.
    Guo X; Liu X; Lin F; Li H; Fan Y; Zhang N
    Sci Rep; 2015 May; 5():10569. PubMed ID: 26014889
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transparent Microelectrode Arrays Fabricated by Ion Beam Assisted Deposition for Neuronal Cell in Vitro Recordings.
    Ryynänen T; Mzezewa R; Meriläinen E; Hyvärinen T; Lekkala J; Narkilahti S; Kallio P
    Micromachines (Basel); 2020 May; 11(5):. PubMed ID: 32423145
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.