These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 32706240)

  • 1. New Schottky-Type Wire-Based Solar Cell with NiSi
    Le Duc T; Moyen E; Zamfir MR; Joe J; Yan X; Zhang Y; Pribat D
    ACS Appl Mater Interfaces; 2020 Aug; 12(33):37464-37469. PubMed ID: 32706240
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wafer-scale high-throughput ordered arrays of Si and coaxial Si/Si(1-x)Ge(x) wires: fabrication, characterization, and photovoltaic application.
    Pan C; Luo Z; Xu C; Luo J; Liang R; Zhu G; Wu W; Guo W; Yan X; Xu J; Wang ZL; Zhu J
    ACS Nano; 2011 Aug; 5(8):6629-36. PubMed ID: 21749059
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metal-Insulator-Semiconductor Nanowire Network Solar Cells.
    Oener SZ; van de Groep J; Macco B; Bronsveld PC; Kessels WM; Polman A; Garnett EC
    Nano Lett; 2016 Jun; 16(6):3689-95. PubMed ID: 27172429
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Implementation of Ambipolar Polysilicon Thin-Film Transistors with Nickel Silicide Schottky Junctions by Low-Thermal-Budget Microwave Annealing.
    Min JG; Lee DH; Kim YU; Cho WJ
    Nanomaterials (Basel); 2022 Feb; 12(4):. PubMed ID: 35214957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication and Gas-Sensing Properties of Ni-Silicide/Si Nanowires.
    Hsu HF; Chen CA; Liu SW; Tang CK
    Nanoscale Res Lett; 2017 Dec; 12(1):182. PubMed ID: 28282978
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GaAs nanowire array solar cells with axial p-i-n junctions.
    Yao M; Huang N; Cong S; Chi CY; Seyedi MA; Lin YT; Cao Y; Povinelli ML; Dapkus PD; Zhou C
    Nano Lett; 2014 Jun; 14(6):3293-303. PubMed ID: 24849203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study of Si Nanowires Produced by Metal-Assisted Chemical Etching as a Light-Trapping Material in n-type c-Si Solar Cells.
    Leontis I; Botzakaki MA; Georga SN; Nassiopoulou AG
    ACS Omega; 2018 Sep; 3(9):10898-10906. PubMed ID: 31459200
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Efficiency Nanowire Solar Cells with Omnidirectionally Enhanced Absorption Due to Self-Aligned Indium-Tin-Oxide Mie Scatterers.
    van Dam D; van Hoof NJ; Cui Y; van Veldhoven PJ; Bakkers EP; Gómez Rivas J; Haverkort JE
    ACS Nano; 2016 Dec; 10(12):11414-11419. PubMed ID: 28024324
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-performance single CdS nanowire (nanobelt) Schottky junction solar cells with Au/graphene Schottky electrodes.
    Ye Y; Dai Y; Dai L; Shi Z; Liu N; Wang F; Fu L; Peng R; Wen X; Chen Z; Liu Z; Qin G
    ACS Appl Mater Interfaces; 2010 Dec; 2(12):3406-10. PubMed ID: 21058686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A graphene/single GaAs nanowire Schottky junction photovoltaic device.
    Luo Y; Yan X; Zhang J; Li B; Wu Y; Lu Q; Jin C; Zhang X; Ren X
    Nanoscale; 2018 May; 10(19):9212-9217. PubMed ID: 29726561
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On Field-Effect Photovoltaics: Gate Enhancement of the Power Conversion Efficiency in a Nanotube/Silicon-Nanowire Solar Cell.
    Petterson MK; Lemaitre MG; Shen Y; Wadhwa P; Hou J; Vasilyeva SV; Kravchenko II; Rinzler AG
    ACS Appl Mater Interfaces; 2015 Sep; 7(38):21182-7. PubMed ID: 26352052
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrical transport characterization of PEDOT:PSS/n-Si Schottky diodes and their applications in solar cells.
    Khurelbaatar Z; Hyung JH; Kim GS; Park NW; Shim KH; Lee SK
    J Nanosci Nanotechnol; 2014 Jun; 14(6):4394-9. PubMed ID: 24738402
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-Performance GaAs Nanowire Solar Cells for Flexible and Transparent Photovoltaics.
    Han N; Yang ZX; Wang F; Dong G; Yip S; Liang X; Hung TF; Chen Y; Ho JC
    ACS Appl Mater Interfaces; 2015 Sep; 7(36):20454-9. PubMed ID: 26284305
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facile fabrication of Si nanowire arrays for solar cell application.
    Li X; Tay BK
    J Nanosci Nanotechnol; 2011 Dec; 11(12):10539-43. PubMed ID: 22408943
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoscale electrical analyses of axial-junction GaAsP nanowires for solar cell applications.
    Saket O; Himwas C; Piazza V; Bayle F; Cattoni A; Oehler F; Patriarche G; Travers L; Collin S; Julien FH; Harmand JC; Tchernycheva M
    Nanotechnology; 2020 Apr; 31(14):145708. PubMed ID: 31846937
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single wire radial junction photovoltaic devices fabricated using aluminum catalyzed silicon nanowires.
    Ke Y; Wang X; Weng XJ; Kendrick CE; Yu YA; Eichfeld SM; Yoon HP; Redwing JM; Mayer TS; Habib YM
    Nanotechnology; 2011 Nov; 22(44):445401. PubMed ID: 21983364
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple Schottky Barrier-Limited Field-Effect Transistors on a Single Silicon Nanowire with an Intrinsic Doping Gradient.
    Barreda JL; Keiper TD; Zhang M; Xiong P
    ACS Appl Mater Interfaces; 2017 Apr; 9(13):12046-12053. PubMed ID: 28274114
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conjugated polymer-silicon nanowire array hybrid Schottky diode for solar cell application.
    Zhang F; Song T; Sun B
    Nanotechnology; 2012 May; 23(19):194006. PubMed ID: 22538992
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimized efficiency in InP nanowire solar cells with accurate 1D analysis.
    Chen Y; Kivisaari P; Pistol ME; Anttu N
    Nanotechnology; 2018 Jan; 29(4):045401. PubMed ID: 29189204
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications.
    Kelzenberg MD; Boettcher SW; Petykiewicz JA; Turner-Evans DB; Putnam MC; Warren EL; Spurgeon JM; Briggs RM; Lewis NS; Atwater HA
    Nat Mater; 2010 Mar; 9(3):239-44. PubMed ID: 20154692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.