These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
565 related articles for article (PubMed ID: 32706384)
1. Development of a Deep Learning Model to Identify Lymph Node Metastasis on Magnetic Resonance Imaging in Patients With Cervical Cancer. Wu Q; Wang S; Zhang S; Wang M; Ding Y; Fang J; Wu Q; Qian W; Liu Z; Sun K; Jin Y; Ma H; Tian J JAMA Netw Open; 2020 Jul; 3(7):e2011625. PubMed ID: 32706384 [TBL] [Abstract][Full Text] [Related]
2. Magnetic resonance imaging radiomics predicts preoperative axillary lymph node metastasis to support surgical decisions and is associated with tumor microenvironment in invasive breast cancer: A machine learning, multicenter study. Yu Y; He Z; Ouyang J; Tan Y; Chen Y; Gu Y; Mao L; Ren W; Wang J; Lin L; Wu Z; Liu J; Ou Q; Hu Q; Li A; Chen K; Li C; Lu N; Li X; Su F; Liu Q; Xie C; Yao H EBioMedicine; 2021 Jul; 69():103460. PubMed ID: 34233259 [TBL] [Abstract][Full Text] [Related]
3. Development and Validation of a Preoperative Magnetic Resonance Imaging Radiomics-Based Signature to Predict Axillary Lymph Node Metastasis and Disease-Free Survival in Patients With Early-Stage Breast Cancer. Yu Y; Tan Y; Xie C; Hu Q; Ouyang J; Chen Y; Gu Y; Li A; Lu N; He Z; Yang Y; Chen K; Ma J; Li C; Ma M; Li X; Zhang R; Zhong H; Ou Q; Zhang Y; He Y; Li G; Wu Z; Su F; Song E; Yao H JAMA Netw Open; 2020 Dec; 3(12):e2028086. PubMed ID: 33289845 [TBL] [Abstract][Full Text] [Related]
4. Preoperative prediction of sentinel lymph node metastasis in breast cancer by radiomic signatures from dynamic contrast-enhanced MRI. Liu C; Ding J; Spuhler K; Gao Y; Serrano Sosa M; Moriarty M; Hussain S; He X; Liang C; Huang C J Magn Reson Imaging; 2019 Jan; 49(1):131-140. PubMed ID: 30171822 [TBL] [Abstract][Full Text] [Related]
5. Integrating MRI-based radiomics and clinicopathological features for preoperative prognostication of early-stage cervical adenocarcinoma patients: in comparison to deep learning approach. Qiu H; Wang M; Wang S; Li X; Wang D; Qin Y; Xu Y; Yin X; Hacker M; Han S; Li X Cancer Imaging; 2024 Aug; 24(1):101. PubMed ID: 39090668 [TBL] [Abstract][Full Text] [Related]
6. (18)F-FDG PET in stage IB/IIB cervical adenocarcinoma/adenosquamous carcinoma. Chou HH; Chang HP; Lai CH; Ng KK; Hsueh S; Wu TI; Chen MY; Yen TC; Hong JH; Chang TC Eur J Nucl Med Mol Imaging; 2010 Apr; 37(4):728-35. PubMed ID: 20069296 [TBL] [Abstract][Full Text] [Related]
7. Artificial intelligence-based model for lymph node metastases detection on whole slide images in bladder cancer: a retrospective, multicentre, diagnostic study. Wu S; Hong G; Xu A; Zeng H; Chen X; Wang Y; Luo Y; Wu P; Liu C; Jiang N; Dang Q; Yang C; Liu B; Shen R; Chen Z; Liao C; Lin Z; Wang J; Lin T Lancet Oncol; 2023 Apr; 24(4):360-370. PubMed ID: 36893772 [TBL] [Abstract][Full Text] [Related]
8. Radiomic signature as a predictive factor for lymph node metastasis in early-stage cervical cancer. Kan Y; Dong D; Zhang Y; Jiang W; Zhao N; Han L; Fang M; Zang Y; Hu C; Tian J; Li C; Luo Y J Magn Reson Imaging; 2019 Jan; 49(1):304-310. PubMed ID: 30102438 [TBL] [Abstract][Full Text] [Related]
9. Predicting Lymph Node Metastasis From Primary Cervical Squamous Cell Carcinoma Based on Deep Learning in Histopathologic Images. Guo Q; Qu L; Zhu J; Li H; Wu Y; Wang S; Yu M; Wu J; Wen H; Ju X; Wang X; Bi R; Shi Y; Wu X Mod Pathol; 2023 Dec; 36(12):100316. PubMed ID: 37634868 [TBL] [Abstract][Full Text] [Related]
10. Radiographical assessment of tumour stroma and treatment outcomes using deep learning: a retrospective, multicohort study. Jiang Y; Liang X; Han Z; Wang W; Xi S; Li T; Chen C; Yuan Q; Li N; Yu J; Xie Y; Xu Y; Zhou Z; Poultsides GA; Li G; Li R Lancet Digit Health; 2021 Jun; 3(6):e371-e382. PubMed ID: 34045003 [TBL] [Abstract][Full Text] [Related]
11. Noninvasive Prediction of Occult Peritoneal Metastasis in Gastric Cancer Using Deep Learning. Jiang Y; Liang X; Wang W; Chen C; Yuan Q; Zhang X; Li N; Chen H; Yu J; Xie Y; Xu Y; Zhou Z; Li G; Li R JAMA Netw Open; 2021 Jan; 4(1):e2032269. PubMed ID: 33399858 [TBL] [Abstract][Full Text] [Related]
12. Histogram analysis of apparent diffusion coefficients for predicting pelvic lymph node metastasis in patients with uterine cervical cancer. Lee J; Kim CK; Park SY MAGMA; 2020 Apr; 33(2):283-292. PubMed ID: 31549269 [TBL] [Abstract][Full Text] [Related]
13. Association of MRI-derived radiomic biomarker with disease-free survival in patients with early-stage cervical cancer. Fang J; Zhang B; Wang S; Jin Y; Wang F; Ding Y; Chen Q; Chen L; Li Y; Li M; Chen Z; Liu L; Liu Z; Tian J; Zhang S Theranostics; 2020; 10(5):2284-2292. PubMed ID: 32089742 [TBL] [Abstract][Full Text] [Related]
14. Deep learning nomogram for predicting lymph node metastasis using computed tomography image in cervical cancer. Li P; Feng B; Liu Y; Chen Y; Zhou H; Chen Y; Li W; Long W Acta Radiol; 2023 Jan; 64(1):360-369. PubMed ID: 34874188 [TBL] [Abstract][Full Text] [Related]
15. Comparison of the value of ultrasound and enhanced magnetic resonance imaging in judging cervical lymph node metastasis in patients with oral cancer. Li Y; Su X; Yao F; Wu T; Peng J; Yang A Bull Cancer; 2021 Dec; 108(12):1085-1090. PubMed ID: 34782121 [TBL] [Abstract][Full Text] [Related]
16. Role of magnetic resonance imaging and positron emission tomography/computed tomography in preoperative lymph node detection of uterine cervical cancer. Chung HH; Kang KW; Cho JY; Kim JW; Park NH; Song YS; Kim SH; Chung JK; Kang SB Am J Obstet Gynecol; 2010 Aug; 203(2):156.e1-5. PubMed ID: 20435285 [TBL] [Abstract][Full Text] [Related]
17. Prediction of lymph node status in patients with early-stage cervical cancer based on radiomic features of magnetic resonance imaging (MRI) images. Liu S; Zhou Y; Wang C; Shen J; Zheng Y BMC Med Imaging; 2023 Aug; 23(1):101. PubMed ID: 37528338 [TBL] [Abstract][Full Text] [Related]
18. Attention-based Deep Learning for the Preoperative Differentiation of Axillary Lymph Node Metastasis in Breast Cancer on DCE-MRI. Gao J; Zhong X; Li W; Li Q; Shao H; Wang Z; Dai Y; Ma H; Shi Y; Zhang H; Duan S; Zhang K; Yang P; Zhao F; Zhang H; Xie H; Mao N J Magn Reson Imaging; 2023 Jun; 57(6):1842-1853. PubMed ID: 36219519 [TBL] [Abstract][Full Text] [Related]
19. Pre-treatment MRI minimum apparent diffusion coefficient value is a potential prognostic imaging biomarker in cervical cancer patients treated with definitive chemoradiation. Marconi DG; Fregnani JH; Rossini RR; Netto AK; Lucchesi FR; Tsunoda AT; Kamrava M BMC Cancer; 2016 Jul; 16():556. PubMed ID: 27469349 [TBL] [Abstract][Full Text] [Related]
20. Preoperative magnetic resonance imaging criteria for predicting lymph node metastasis in patients with stage IB1-IIA2 cervical cancer. He F; Zu S; Chen X; Liu J; Yi Y; Yang H; Wang F; Yuan S Cancer Med; 2021 Aug; 10(16):5429-5436. PubMed ID: 34278729 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]