BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

549 related articles for article (PubMed ID: 32706384)

  • 1. Development of a Deep Learning Model to Identify Lymph Node Metastasis on Magnetic Resonance Imaging in Patients With Cervical Cancer.
    Wu Q; Wang S; Zhang S; Wang M; Ding Y; Fang J; Wu Q; Qian W; Liu Z; Sun K; Jin Y; Ma H; Tian J
    JAMA Netw Open; 2020 Jul; 3(7):e2011625. PubMed ID: 32706384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetic resonance imaging radiomics predicts preoperative axillary lymph node metastasis to support surgical decisions and is associated with tumor microenvironment in invasive breast cancer: A machine learning, multicenter study.
    Yu Y; He Z; Ouyang J; Tan Y; Chen Y; Gu Y; Mao L; Ren W; Wang J; Lin L; Wu Z; Liu J; Ou Q; Hu Q; Li A; Chen K; Li C; Lu N; Li X; Su F; Liu Q; Xie C; Yao H
    EBioMedicine; 2021 Jul; 69():103460. PubMed ID: 34233259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and Validation of a Preoperative Magnetic Resonance Imaging Radiomics-Based Signature to Predict Axillary Lymph Node Metastasis and Disease-Free Survival in Patients With Early-Stage Breast Cancer.
    Yu Y; Tan Y; Xie C; Hu Q; Ouyang J; Chen Y; Gu Y; Li A; Lu N; He Z; Yang Y; Chen K; Ma J; Li C; Ma M; Li X; Zhang R; Zhong H; Ou Q; Zhang Y; He Y; Li G; Wu Z; Su F; Song E; Yao H
    JAMA Netw Open; 2020 Dec; 3(12):e2028086. PubMed ID: 33289845
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preoperative prediction of sentinel lymph node metastasis in breast cancer by radiomic signatures from dynamic contrast-enhanced MRI.
    Liu C; Ding J; Spuhler K; Gao Y; Serrano Sosa M; Moriarty M; Hussain S; He X; Liang C; Huang C
    J Magn Reson Imaging; 2019 Jan; 49(1):131-140. PubMed ID: 30171822
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Noninvasive prediction of lymph node status for patients with early-stage cervical cancer based on radiomics features from ultrasound images.
    Jin X; Ai Y; Zhang J; Zhu H; Jin J; Teng Y; Chen B; Xie C
    Eur Radiol; 2020 Jul; 30(7):4117-4124. PubMed ID: 32078013
    [TBL] [Abstract][Full Text] [Related]  

  • 6. (18)F-FDG PET in stage IB/IIB cervical adenocarcinoma/adenosquamous carcinoma.
    Chou HH; Chang HP; Lai CH; Ng KK; Hsueh S; Wu TI; Chen MY; Yen TC; Hong JH; Chang TC
    Eur J Nucl Med Mol Imaging; 2010 Apr; 37(4):728-35. PubMed ID: 20069296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Artificial intelligence-based model for lymph node metastases detection on whole slide images in bladder cancer: a retrospective, multicentre, diagnostic study.
    Wu S; Hong G; Xu A; Zeng H; Chen X; Wang Y; Luo Y; Wu P; Liu C; Jiang N; Dang Q; Yang C; Liu B; Shen R; Chen Z; Liao C; Lin Z; Wang J; Lin T
    Lancet Oncol; 2023 Apr; 24(4):360-370. PubMed ID: 36893772
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radiomic signature as a predictive factor for lymph node metastasis in early-stage cervical cancer.
    Kan Y; Dong D; Zhang Y; Jiang W; Zhao N; Han L; Fang M; Zang Y; Hu C; Tian J; Li C; Luo Y
    J Magn Reson Imaging; 2019 Jan; 49(1):304-310. PubMed ID: 30102438
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting Lymph Node Metastasis From Primary Cervical Squamous Cell Carcinoma Based on Deep Learning in Histopathologic Images.
    Guo Q; Qu L; Zhu J; Li H; Wu Y; Wang S; Yu M; Wu J; Wen H; Ju X; Wang X; Bi R; Shi Y; Wu X
    Mod Pathol; 2023 Dec; 36(12):100316. PubMed ID: 37634868
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Radiographical assessment of tumour stroma and treatment outcomes using deep learning: a retrospective, multicohort study.
    Jiang Y; Liang X; Han Z; Wang W; Xi S; Li T; Chen C; Yuan Q; Li N; Yu J; Xie Y; Xu Y; Zhou Z; Poultsides GA; Li G; Li R
    Lancet Digit Health; 2021 Jun; 3(6):e371-e382. PubMed ID: 34045003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Noninvasive Prediction of Occult Peritoneal Metastasis in Gastric Cancer Using Deep Learning.
    Jiang Y; Liang X; Wang W; Chen C; Yuan Q; Zhang X; Li N; Chen H; Yu J; Xie Y; Xu Y; Zhou Z; Li G; Li R
    JAMA Netw Open; 2021 Jan; 4(1):e2032269. PubMed ID: 33399858
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Histogram analysis of apparent diffusion coefficients for predicting pelvic lymph node metastasis in patients with uterine cervical cancer.
    Lee J; Kim CK; Park SY
    MAGMA; 2020 Apr; 33(2):283-292. PubMed ID: 31549269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Association of MRI-derived radiomic biomarker with disease-free survival in patients with early-stage cervical cancer.
    Fang J; Zhang B; Wang S; Jin Y; Wang F; Ding Y; Chen Q; Chen L; Li Y; Li M; Chen Z; Liu L; Liu Z; Tian J; Zhang S
    Theranostics; 2020; 10(5):2284-2292. PubMed ID: 32089742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep learning nomogram for predicting lymph node metastasis using computed tomography image in cervical cancer.
    Li P; Feng B; Liu Y; Chen Y; Zhou H; Chen Y; Li W; Long W
    Acta Radiol; 2023 Jan; 64(1):360-369. PubMed ID: 34874188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of the value of ultrasound and enhanced magnetic resonance imaging in judging cervical lymph node metastasis in patients with oral cancer.
    Li Y; Su X; Yao F; Wu T; Peng J; Yang A
    Bull Cancer; 2021 Dec; 108(12):1085-1090. PubMed ID: 34782121
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of magnetic resonance imaging and positron emission tomography/computed tomography in preoperative lymph node detection of uterine cervical cancer.
    Chung HH; Kang KW; Cho JY; Kim JW; Park NH; Song YS; Kim SH; Chung JK; Kang SB
    Am J Obstet Gynecol; 2010 Aug; 203(2):156.e1-5. PubMed ID: 20435285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Radiomics analysis of magnetic resonance imaging improves diagnostic performance of lymph node metastasis in patients with cervical cancer.
    Wu Q; Wang S; Chen X; Wang Y; Dong L; Liu Z; Tian J; Wang M
    Radiother Oncol; 2019 Sep; 138():141-148. PubMed ID: 31252296
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of lymph node status in patients with early-stage cervical cancer based on radiomic features of magnetic resonance imaging (MRI) images.
    Liu S; Zhou Y; Wang C; Shen J; Zheng Y
    BMC Med Imaging; 2023 Aug; 23(1):101. PubMed ID: 37528338
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Attention-based Deep Learning for the Preoperative Differentiation of Axillary Lymph Node Metastasis in Breast Cancer on DCE-MRI.
    Gao J; Zhong X; Li W; Li Q; Shao H; Wang Z; Dai Y; Ma H; Shi Y; Zhang H; Duan S; Zhang K; Yang P; Zhao F; Zhang H; Xie H; Mao N
    J Magn Reson Imaging; 2023 Jun; 57(6):1842-1853. PubMed ID: 36219519
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pre-treatment MRI minimum apparent diffusion coefficient value is a potential prognostic imaging biomarker in cervical cancer patients treated with definitive chemoradiation.
    Marconi DG; Fregnani JH; Rossini RR; Netto AK; Lucchesi FR; Tsunoda AT; Kamrava M
    BMC Cancer; 2016 Jul; 16():556. PubMed ID: 27469349
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.