These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 32706587)

  • 21. An electrospun nanofiber mat as an electrode for AC-dielectrophoretic trapping of nanoparticles.
    Mondal TK; West JH; Williams SJ
    Nanoscale; 2023 Nov; 15(45):18241-18249. PubMed ID: 37947459
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Erratum: Preparation of Poly(pentafluorophenyl acrylate) Functionalized SiO2 Beads for Protein Purification.
    J Vis Exp; 2019 Apr; (146):. PubMed ID: 31038480
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electrokinetic particle trapping in microfluidic wells using conductive nanofiber mats.
    West JH; Mondal TK; Williams SJ
    Electrophoresis; 2024 Sep; ():. PubMed ID: 39223919
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Solution pH change in non-uniform alternating current electric fields at frequencies above the electrode charging frequency.
    An R; Massa K; Wipf DO; Minerick AR
    Biomicrofluidics; 2014 Nov; 8(6):064126. PubMed ID: 25553200
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multiphase electrodes for microbead control applications: integration of DEP and electrokinetics for bio-particle positioning.
    Yantzi JD; Yeow JT; Abdallah SS
    Biosens Bioelectron; 2007 May; 22(11):2539-45. PubMed ID: 17112718
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Frequency sweep rate dependence on the dielectrophoretic response of polystyrene beads and red blood cells.
    Adams TN; Leonard KM; Minerick AR
    Biomicrofluidics; 2013; 7(6):64114. PubMed ID: 24396548
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Selective parallel integration of individual metallic single-walled carbon nanotubes from heterogeneous solutions.
    Burg BR; Schneider J; Bianco V; Schirmer NC; Poulikakos D
    Langmuir; 2010 Jul; 26(13):10419-24. PubMed ID: 20527829
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electro-osmotic fluxes in multi-well electro-remediation processes.
    López-Vizcaíno R; Sáez C; Mena E; Villaseñor J; Cañizares P; Rodrigo MA
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2011; 46(13):1549-57. PubMed ID: 22029697
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dielectrophoretic cell trapping for improved surface plasmon resonance imaging sensing.
    Costella M; Avenas Q; Frénéa-Robin M; Marchalot J; Bevilacqua P; Charette PG; Canva M
    Electrophoresis; 2019 May; 40(10):1417-1425. PubMed ID: 30830963
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A 3D nanoelectrokinetic model for predictive assembly of nanowire arrays using floating electrode dielectrophoresis.
    Singh SK; Aryaan N; Shikder MRA; Byles BW; Pomerantseva E; Subramanian A
    Nanotechnology; 2019 Jan; 30(2):025301. PubMed ID: 30398168
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Performance improvement of plasmonic sensors using a combination of AC electrokinetic effects for (bio)target capture.
    Avenas Q; Moreau J; Costella M; Maalaoui A; Souifi A; Charette P; Marchalot J; Frénéa-Robin M; Canva M
    Electrophoresis; 2019 May; 40(10):1426-1435. PubMed ID: 30786069
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electric field directed assembly of high-density microbead arrays.
    Barbee KD; Hsiao AP; Heller MJ; Huang X
    Lab Chip; 2009 Nov; 9(22):3268-74. PubMed ID: 19865735
    [TBL] [Abstract][Full Text] [Related]  

  • 33. AC electrokinetic phenomena generated by microelectrode structures.
    Hart R; Oh J; Capurro J; Noh HM
    J Vis Exp; 2008 Jul; (17):. PubMed ID: 19066515
    [TBL] [Abstract][Full Text] [Related]  

  • 34. AC dielectrophoretic manipulation and electroporation of vaccinia virus using carbon nanoelectrode arrays.
    Madiyar FR; Haller SL; Farooq O; Rothenburg S; Culbertson C; Li J
    Electrophoresis; 2017 Jun; 38(11):1515-1525. PubMed ID: 28211116
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Experimental and theoretical study of dielectrophoretic particle trapping in arrays of insulating structures: Effect of particle size and shape.
    Saucedo-Espinosa MA; Lapizco-Encinas BH
    Electrophoresis; 2015 May; 36(9-10):1086-97. PubMed ID: 25487065
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dielectrophoretic trapping of nanoparticles with an electrokinetic nanoprobe.
    Wood NR; Wolsiefer AI; Cohn RW; Williams SJ
    Electrophoresis; 2013 Jul; 34(13):1922-30. PubMed ID: 23592407
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dielectrophoresis in microchips containing arrays of insulating posts: theoretical and experimental results.
    Cummings EB; Singh AK
    Anal Chem; 2003 Sep; 75(18):4724-31. PubMed ID: 14674447
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Step-Wise Deposition Process for Dielectrophoretic Formation of Conductive 50-Micron-Long Carbon Nanotube Bridges.
    Zhou T; Kropp E; Chen J; Kulinsky L
    Micromachines (Basel); 2020 Apr; 11(4):. PubMed ID: 32244731
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dielectrophoretic microbead sorting using modular electrode design and capillary-driven microfluidics.
    Tirapu-Azpiroz J; Temiz Y; Delamarche E
    Biomed Microdevices; 2017 Oct; 19(4):95. PubMed ID: 29082438
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dielectrophoretic separation of bioparticles in microdevices: a review.
    Jubery TZ; Srivastava SK; Dutta P
    Electrophoresis; 2014 Mar; 35(5):691-713. PubMed ID: 24338825
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.