These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
476 related articles for article (PubMed ID: 32706862)
1. Fully automated hybrid approach to predict the IDH mutation status of gliomas via deep learning and radiomics. Choi YS; Bae S; Chang JH; Kang SG; Kim SH; Kim J; Rim TH; Choi SH; Jain R; Lee SK Neuro Oncol; 2021 Feb; 23(2):304-313. PubMed ID: 32706862 [TBL] [Abstract][Full Text] [Related]
2. Structural- and DTI- MRI enable automated prediction of IDH Mutation Status in CNS WHO Grade 2-4 glioma patients: a deep Radiomics Approach. Yuan J; Siakallis L; Li HB; Brandner S; Zhang J; Li C; Mancini L; Bisdas S BMC Med Imaging; 2024 May; 24(1):104. PubMed ID: 38702613 [TBL] [Abstract][Full Text] [Related]
3. A novel fully automated MRI-based deep-learning method for classification of IDH mutation status in brain gliomas. Bangalore Yogananda CG; Shah BR; Vejdani-Jahromi M; Nalawade SS; Murugesan GK; Yu FF; Pinho MC; Wagner BC; Mickey B; Patel TR; Fei B; Madhuranthakam AJ; Maldjian JA Neuro Oncol; 2020 Mar; 22(3):402-411. PubMed ID: 31637430 [TBL] [Abstract][Full Text] [Related]
4. Two-Stage Training Framework Using Multicontrast MRI Radiomics for Truong NCD; Bangalore Yogananda CG; Wagner BC; Holcomb JM; Reddy D; Saadat N; Hatanpaa KJ; Patel TR; Fei B; Lee MD; Jain R; Bruce RJ; Pinho MC; Madhuranthakam AJ; Maldjian JA Radiol Artif Intell; 2024 Jul; 6(4):e230218. PubMed ID: 38775670 [TBL] [Abstract][Full Text] [Related]
5. Residual Convolutional Neural Network for the Determination of Chang K; Bai HX; Zhou H; Su C; Bi WL; Agbodza E; Kavouridis VK; Senders JT; Boaro A; Beers A; Zhang B; Capellini A; Liao W; Shen Q; Li X; Xiao B; Cryan J; Ramkissoon S; Ramkissoon L; Ligon K; Wen PY; Bindra RS; Woo J; Arnaout O; Gerstner ER; Zhang PJ; Rosen BR; Yang L; Huang RY; Kalpathy-Cramer J Clin Cancer Res; 2018 Mar; 24(5):1073-1081. PubMed ID: 29167275 [No Abstract] [Full Text] [Related]
6. Machine learning and radiomic phenotyping of lower grade gliomas: improving survival prediction. Choi YS; Ahn SS; Chang JH; Kang SG; Kim EH; Kim SH; Jain R; Lee SK Eur Radiol; 2020 Jul; 30(7):3834-3842. PubMed ID: 32162004 [TBL] [Abstract][Full Text] [Related]
7. Automated machine learning to predict the co-occurrence of isocitrate dehydrogenase mutations and O Zhang S; Sun H; Su X; Yang X; Wang W; Wan X; Tan Q; Chen N; Yue Q; Gong Q J Magn Reson Imaging; 2021 Jul; 54(1):197-205. PubMed ID: 33393131 [TBL] [Abstract][Full Text] [Related]
8. Prediction of IDH genotype in gliomas with dynamic susceptibility contrast perfusion MR imaging using an explainable recurrent neural network. Choi KS; Choi SH; Jeong B Neuro Oncol; 2019 Sep; 21(9):1197-1209. PubMed ID: 31127834 [TBL] [Abstract][Full Text] [Related]
9. IDH1 mutation prediction using MR-based radiomics in glioblastoma: comparison between manual and fully automated deep learning-based approach of tumor segmentation. Choi Y; Nam Y; Lee YS; Kim J; Ahn KJ; Jang J; Shin NY; Kim BS; Jeon SS Eur J Radiol; 2020 Jul; 128():109031. PubMed ID: 32417712 [TBL] [Abstract][Full Text] [Related]
10. Added prognostic value of 3D deep learning-derived features from preoperative MRI for adult-type diffuse gliomas. Lee JO; Ahn SS; Choi KS; Lee J; Jang J; Park JH; Hwang I; Park CK; Park SH; Chung JW; Choi SH Neuro Oncol; 2024 Mar; 26(3):571-580. PubMed ID: 37855826 [TBL] [Abstract][Full Text] [Related]
11. Radiomics Strategy for Molecular Subtype Stratification of Lower-Grade Glioma: Detecting IDH and TP53 Mutations Based on Multimodal MRI. Zhang X; Tian Q; Wang L; Liu Y; Li B; Liang Z; Gao P; Zheng K; Zhao B; Lu H J Magn Reson Imaging; 2018 Oct; 48(4):916-926. PubMed ID: 29394005 [TBL] [Abstract][Full Text] [Related]
12. Automated MRI based pipeline for segmentation and prediction of grade, IDH mutation and 1p19q co-deletion in glioma. Decuyper M; Bonte S; Deblaere K; Van Holen R Comput Med Imaging Graph; 2021 Mar; 88():101831. PubMed ID: 33482430 [TBL] [Abstract][Full Text] [Related]
13. Computational Pathology for Prediction of Isocitrate Dehydrogenase Gene Mutation from Whole Slide Images in Adult Patients with Diffuse Glioma. Zhao Y; Wang W; Ji Y; Guo Y; Duan J; Liu X; Yan D; Liang D; Li W; Zhang Z; Li ZC Am J Pathol; 2024 May; 194(5):747-758. PubMed ID: 38325551 [TBL] [Abstract][Full Text] [Related]
14. Noninvasive prediction of IDH mutation status in gliomas using preoperative multiparametric MRI radiomics nomogram: A mutlicenter study. Lu J; Xu W; Chen X; Wang T; Li H Magn Reson Imaging; 2023 Dec; 104():72-79. PubMed ID: 37778708 [TBL] [Abstract][Full Text] [Related]
15. An Intra- and Inter-Modality Fusion Model Using MR Images for Prediction of Glioma Isocitrate Dehydrogenase (IDH) Mutation. Shi X; Zhang X; Iwamoto Y; Cheng J; Bai J; Zhao G; Chen YW Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():198-202. PubMed ID: 36086447 [TBL] [Abstract][Full Text] [Related]
16. Predicting Isocitrate Dehydrogenase (IDH) Mutation Status in Gliomas Using Multiparameter MRI Radiomics Features. Peng H; Huo J; Li B; Cui Y; Zhang H; Zhang L; Ma L J Magn Reson Imaging; 2021 May; 53(5):1399-1407. PubMed ID: 33179832 [TBL] [Abstract][Full Text] [Related]
17. MRI Radiomic Features to Predict IDH1 Mutation Status in Gliomas: A Machine Learning Approach using Gradient Tree Boosting. Sakai Y; Yang C; Kihira S; Tsankova N; Khan F; Hormigo A; Lai A; Cloughesy T; Nael K Int J Mol Sci; 2020 Oct; 21(21):. PubMed ID: 33121211 [TBL] [Abstract][Full Text] [Related]
18. External Validation of a Convolutional Neural Network for IDH Mutation Prediction. Hrapșa I; Florian IA; Șușman S; Farcaș M; Beni L; Florian IS Medicina (Kaunas); 2022 Apr; 58(4):. PubMed ID: 35454365 [No Abstract] [Full Text] [Related]
19. Using radiomics based on multicenter magnetic resonance images to predict isocitrate dehydrogenase mutation status of gliomas. Liu Y; Zheng Z; Wang Z; Qian X; Yao Z; Cheng C; Zhou Z; Gao F; Dai Y Quant Imaging Med Surg; 2023 Apr; 13(4):2143-2155. PubMed ID: 37064376 [TBL] [Abstract][Full Text] [Related]
20. Predicting glioblastoma molecular subtypes and prognosis with a multimodal model integrating convolutional neural network, radiomics, and semantics. Zhong S; Ren JX; Yu ZP; Peng YD; Yu CW; Deng D; Xie Y; He ZQ; Duan H; Wu B; Li H; Yang WZ; Bai Y; Sai K; Chen YS; Guo CC; Li DP; Cheng Y; Zhang XH; Mou YG J Neurosurg; 2023 Aug; 139(2):305-314. PubMed ID: 36461822 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]