These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
214 related articles for article (PubMed ID: 32707039)
21. Rapid and Selective Chemical Editing of Ribosomally Synthesized and Post-Translationally Modified Peptides (RiPPs) via Cu de Vries RH; Viel JH; Kuipers OP; Roelfes G Angew Chem Int Ed Engl; 2021 Feb; 60(8):3946-3950. PubMed ID: 33185967 [TBL] [Abstract][Full Text] [Related]
22. Linearization of the Brevicidine and Laterocidine Lipopeptides Yields Analogues That Retain Full Antibacterial Activity. Ballantine RD; Al Ayed K; Bann SJ; Hoekstra M; Martin NI; Cochrane SA J Med Chem; 2023 Apr; 66(8):6002-6009. PubMed ID: 37071814 [TBL] [Abstract][Full Text] [Related]
23. Recent Advances in the Discovery and Biosynthetic Study of Eukaryotic RiPP Natural Products. Luo S; Dong SH Molecules; 2019 Apr; 24(8):. PubMed ID: 31003555 [TBL] [Abstract][Full Text] [Related]
24. Overview of ribosomal and non-ribosomal antimicrobial peptides produced by Gram positive bacteria. Tajbakhsh M; Karimi A; Fallah F; Akhavan MM Cell Mol Biol (Noisy-le-grand); 2017 Oct; 63(10):20-32. PubMed ID: 29096754 [TBL] [Abstract][Full Text] [Related]
25. Heterologous Expression of Mersacidin in Viel JH; Jaarsma AH; Kuipers OP ACS Synth Biol; 2021 Mar; 10(3):600-608. PubMed ID: 33689311 [TBL] [Abstract][Full Text] [Related]
26. Combinatorial biosynthesis for the generation of new-to-nature peptide antimicrobials. Ruijne F; Kuipers OP Biochem Soc Trans; 2021 Feb; 49(1):203-215. PubMed ID: 33439248 [TBL] [Abstract][Full Text] [Related]
28. Posttranslationally Acting Arginases Provide a Ribosomal Route to Non-proteinogenic Ornithine Residues in Diverse Peptide Sequences. Mordhorst S; Morinaka BI; Vagstad AL; Piel J Angew Chem Int Ed Engl; 2020 Nov; 59(48):21442-21447. PubMed ID: 32780902 [TBL] [Abstract][Full Text] [Related]
29. Engineering ribosomally synthesized and posttranslationally modified peptides as new antibiotics. Vagstad AL Curr Opin Biotechnol; 2023 Apr; 80():102891. PubMed ID: 36702077 [TBL] [Abstract][Full Text] [Related]
30. New Insights into the Biosynthetic Logic of Ribosomally Synthesized and Post-translationally Modified Peptide Natural Products. Ortega MA; van der Donk WA Cell Chem Biol; 2016 Jan; 23(1):31-44. PubMed ID: 26933734 [TBL] [Abstract][Full Text] [Related]
31. Engineering of RiPP pathways for the production of artificial peptides bearing various non-proteinogenic structures. Goto Y; Suga H Curr Opin Chem Biol; 2018 Oct; 46():82-90. PubMed ID: 29957445 [TBL] [Abstract][Full Text] [Related]
32. Advancements in the Application of Ribosomally Synthesized and Post-Translationally Modified Peptides (RiPPs). Han SW; Won HS Biomolecules; 2024 Apr; 14(4):. PubMed ID: 38672495 [TBL] [Abstract][Full Text] [Related]
33. The genomic landscape of ribosomal peptides containing thiazole and oxazole heterocycles. Cox CL; Doroghazi JR; Mitchell DA BMC Genomics; 2015 Oct; 16():778. PubMed ID: 26462797 [TBL] [Abstract][Full Text] [Related]
34. Exploring the Conformational Landscape of a Lanthipeptide Synthetase Using Native Mass Spectrometry. Weerasinghe NW; Habibi Y; Uggowitzer KA; Thibodeaux CJ Biochemistry; 2021 May; 60(19):1506-1519. PubMed ID: 33887902 [TBL] [Abstract][Full Text] [Related]
36. Ribosomal Natural Products, Tailored To Fit. Funk MA; van der Donk WA Acc Chem Res; 2017 Jul; 50(7):1577-1586. PubMed ID: 28682627 [TBL] [Abstract][Full Text] [Related]
37. Heterologous characterization of mechercharmycin A biosynthesis reveals alternative insights into post-translational modifications for RiPPs. Pei ZF; Yang MJ; Zhang K; Jian XH; Tang GL Cell Chem Biol; 2022 Apr; 29(4):650-659.e5. PubMed ID: 34474009 [TBL] [Abstract][Full Text] [Related]
38. Mechanisms of action of ribosomally synthesized and posttranslationally modified peptides (RiPPs). Cao L; Do T; Link AJ J Ind Microbiol Biotechnol; 2021 Jun; 48(3-4):. PubMed ID: 33928382 [TBL] [Abstract][Full Text] [Related]
39. Dissecting the Binding Interactions of Teixobactin with the Bacterial Cell-Wall Precursor Lipid II. Chiorean S; Antwi I; Carney DW; Kotsogianni I; Giltrap AM; Alexander FM; Cochrane SA; Payne RJ; Martin NI; Henninot A; Vederas JC Chembiochem; 2020 Mar; 21(6):789-792. PubMed ID: 31552694 [TBL] [Abstract][Full Text] [Related]