These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
214 related articles for article (PubMed ID: 32707039)
41. Ribosomally synthesized and post-translationally modified peptide natural product discovery in the genomic era. Hetrick KJ; van der Donk WA Curr Opin Chem Biol; 2017 Jun; 38():36-44. PubMed ID: 28260651 [TBL] [Abstract][Full Text] [Related]
42. Bacterial cyclophane-containing RiPPs from radical SAM enzymes. Phan CS; Morinaka BI Nat Prod Rep; 2024 May; 41(5):708-720. PubMed ID: 38047390 [TBL] [Abstract][Full Text] [Related]
43. Increasing the Antimicrobial Activity of Nisin-Based Lantibiotics against Gram-Negative Pathogens. Li Q; Montalban-Lopez M; Kuipers OP Appl Environ Microbiol; 2018 Jun; 84(12):. PubMed ID: 29625984 [TBL] [Abstract][Full Text] [Related]
44. Analysis of modular bioengineered antimicrobial lanthipeptides at nanoliter scale. Schmitt S; Montalbán-López M; Peterhoff D; Deng J; Wagner R; Held M; Kuipers OP; Panke S Nat Chem Biol; 2019 May; 15(5):437-443. PubMed ID: 30936500 [TBL] [Abstract][Full Text] [Related]
45. Selective Modification of Ribosomally Synthesized and Post-Translationally Modified Peptides (RiPPs) through Diels-Alder Cycloadditions on Dehydroalanine Residues. de Vries RH; Viel JH; Oudshoorn R; Kuipers OP; Roelfes G Chemistry; 2019 Oct; 25(55):12698-12702. PubMed ID: 31361053 [TBL] [Abstract][Full Text] [Related]
46. Modular Use of the Uniquely Small Ring A of Mersacidin Generates the Smallest Ribosomally Produced Lanthipeptide. Viel JH; Kuipers OP ACS Synth Biol; 2022 Sep; 11(9):3078-3087. PubMed ID: 36065523 [TBL] [Abstract][Full Text] [Related]
47. Enzyme from an Uncultivated Sponge Bacterium Catalyzes S-Methylation in a Ribosomal Peptide. Helf MJ; Jud A; Piel J Chembiochem; 2017 Mar; 18(5):444-450. PubMed ID: 27966282 [TBL] [Abstract][Full Text] [Related]
48. Post-translational modifications involved in the biosynthesis of thiopeptide antibiotics. Zheng Q; Fang H; Liu W Org Biomol Chem; 2017 Apr; 15(16):3376-3390. PubMed ID: 28358161 [TBL] [Abstract][Full Text] [Related]
49. Genomic charting of ribosomally synthesized natural product chemical space facilitates targeted mining. Skinnider MA; Johnston CW; Edgar RE; Dejong CA; Merwin NJ; Rees PN; Magarvey NA Proc Natl Acad Sci U S A; 2016 Oct; 113(42):E6343-E6351. PubMed ID: 27698135 [TBL] [Abstract][Full Text] [Related]
50. Unveiling the Biosynthetic Pathway of the Ribosomally Synthesized and Post-translationally Modified Peptide Ustiloxin B in Filamentous Fungi. Ye Y; Minami A; Igarashi Y; Izumikawa M; Umemura M; Nagano N; Machida M; Kawahara T; Shin-Ya K; Gomi K; Oikawa H Angew Chem Int Ed Engl; 2016 Jul; 55(28):8072-5. PubMed ID: 27166860 [TBL] [Abstract][Full Text] [Related]
51. Expansion of RiPP biosynthetic space through integration of pan-genomics and machine learning uncovers a novel class of lanthipeptides. Kloosterman AM; Cimermancic P; Elsayed SS; Du C; Hadjithomas M; Donia MS; Fischbach MA; van Wezel GP; Medema MH PLoS Biol; 2020 Dec; 18(12):e3001026. PubMed ID: 33351797 [TBL] [Abstract][Full Text] [Related]
52. Antimicrobial peptides produced by Brevibacillus spp.: structure, classification and bioactivity: a mini review. Yang X; Yousef AE World J Microbiol Biotechnol; 2018 Mar; 34(4):57. PubMed ID: 29594558 [TBL] [Abstract][Full Text] [Related]
53. Employing the promiscuity of lantibiotic biosynthetic machineries to produce novel antimicrobials. Montalbán-López M; van Heel AJ; Kuipers OP FEMS Microbiol Rev; 2017 Jan; 41(1):5-18. PubMed ID: 27591436 [TBL] [Abstract][Full Text] [Related]
54. Expanded genetic code for the engineering of ribosomally synthetized and post-translationally modified peptide natural products (RiPPs). Budisa N Curr Opin Biotechnol; 2013 Aug; 24(4):591-8. PubMed ID: 23537814 [TBL] [Abstract][Full Text] [Related]
55. Mutations in Dynamic Structural Elements Alter the Kinetics and Fidelity of the Multifunctional Class II Lanthipeptide Synthetase, HalM2. Uggowitzer KA; Habibi Y; Wei W; Moitessier N; Thibodeaux CJ Biochemistry; 2021 Feb; 60(5):412-430. PubMed ID: 33507068 [TBL] [Abstract][Full Text] [Related]
56. RiPPMiner-Genome: A Web Resource for Automated Prediction of Crosslinked Chemical Structures of RiPPs by Genome Mining. Agrawal P; Amir S; Deepak ; Barua D; Mohanty D J Mol Biol; 2021 May; 433(11):166887. PubMed ID: 33972022 [TBL] [Abstract][Full Text] [Related]
57. Mechanistic Understanding of Lanthipeptide Biosynthetic Enzymes. Repka LM; Chekan JR; Nair SK; van der Donk WA Chem Rev; 2017 Apr; 117(8):5457-5520. PubMed ID: 28135077 [TBL] [Abstract][Full Text] [Related]
58. DeepRiPP integrates multiomics data to automate discovery of novel ribosomally synthesized natural products. Merwin NJ; Mousa WK; Dejong CA; Skinnider MA; Cannon MJ; Li H; Dial K; Gunabalasingam M; Johnston C; Magarvey NA Proc Natl Acad Sci U S A; 2020 Jan; 117(1):371-380. PubMed ID: 31871149 [TBL] [Abstract][Full Text] [Related]
59. An Amphipathic Alpha-Helix Guides Maturation of the Ribosomally-Synthesized Lipolanthines. Wiebach V; Mainz A; Schnegotzki R; Siegert MJ; Hügelland M; Pliszka N; Süssmuth RD Angew Chem Int Ed Engl; 2020 Sep; 59(38):16777-16785. PubMed ID: 32533616 [TBL] [Abstract][Full Text] [Related]
60. Insights into post-translational modification enzymes from RiPPs: A toolkit for applications in peptide synthesis. Rodríguez V Biotechnol Adv; 2022; 56():107908. PubMed ID: 35032597 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]