These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 32707343)
1. ERP based measures of cognitive workload: A review. Ghani U; Signal N; Niazi IK; Taylor D Neurosci Biobehav Rev; 2020 Nov; 118():18-26. PubMed ID: 32707343 [TBL] [Abstract][Full Text] [Related]
2. A novel approach to validate the efficacy of single task ERP paradigms to measure cognitive workload. Ghani U; Signal N; Niazi IK; Taylor D Int J Psychophysiol; 2020 Dec; 158():9-15. PubMed ID: 33045292 [TBL] [Abstract][Full Text] [Related]
3. Mental workload classification based on ignored auditory probes and spatial covariance. Tang S; Liu C; Zhang Q; Gu H; Li X; Li Z J Neural Eng; 2021 Aug; 18(4):. PubMed ID: 34280906 [No Abstract] [Full Text] [Related]
4. Cognitive workload modulation through degraded visual stimuli: a single-trial EEG study. Yu K; Prasad I; Mir H; Thakor N; Al-Nashash H J Neural Eng; 2015 Aug; 12(4):046020. PubMed ID: 26065874 [TBL] [Abstract][Full Text] [Related]
5. Comparison of endogenous event-related potentials in attend and non-attend conditions: latency changes with normal aging. Squires NK; Ollo C Clin Neurophysiol; 1999 Mar; 110(3):564-74. PubMed ID: 10363780 [TBL] [Abstract][Full Text] [Related]
6. Investigation of the optimal time interval between task-irrelevant auditory probes for evaluating mental workload in the shortest possible time. Sugimoto F; Kimura M; Takeda Y Int J Psychophysiol; 2022 Jul; 177():103-110. PubMed ID: 35513137 [TBL] [Abstract][Full Text] [Related]
7. The efficacy of auditory probes in indexing cognitive workload is dependent on stimulus complexity. Dyke FB; Leiker AM; Grand KF; Godwin MM; Thompson AG; Rietschel JC; McDonald CG; Miller MW Int J Psychophysiol; 2015 Jan; 95(1):56-62. PubMed ID: 25528402 [TBL] [Abstract][Full Text] [Related]
8. State of the art and future directions for measuring event-related potentials during cycling exercise: a systematic review. Renoud-Grappin R; Pazart L; Giustiniani J; Gabriel D PeerJ; 2024; 12():e17448. PubMed ID: 38948229 [TBL] [Abstract][Full Text] [Related]
9. Mental workload of young and older adults gauged with ERPs and spectral power during N-Back task performance. Pergher V; Wittevrongel B; Tournoy J; Schoenmakers B; Van Hulle MM Biol Psychol; 2019 Sep; 146():107726. PubMed ID: 31276755 [TBL] [Abstract][Full Text] [Related]
10. A simple ERP method for quantitative analysis of cognitive workload in myoelectric prosthesis control and human-machine interaction. Deeny S; Chicoine C; Hargrove L; Parrish T; Jayaraman A PLoS One; 2014; 9(11):e112091. PubMed ID: 25402345 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of a headphones-fitted EEG system for the recording of auditory evoked potentials and mental workload assessment. Ladouce S; Pietzker M; Manzey D; Dehais F Behav Brain Res; 2024 Mar; 460():114827. PubMed ID: 38128886 [TBL] [Abstract][Full Text] [Related]
12. Response compatibility and the relationship between event-related potentials and the timing of a motor response. Goodin DS; Aminoff MJ; Chequer RS; Ortiz TA J Neurophysiol; 1996 Dec; 76(6):3705-13. PubMed ID: 8985868 [TBL] [Abstract][Full Text] [Related]
13. Task-irrelevant Auditory Event-related Potentials as Mental Workload Indicators: A Between-task Comparison Study Xu J; Ke Y; Liu S; Song X; Xu C; Zhou G; Ming D Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3216-3219. PubMed ID: 33018689 [TBL] [Abstract][Full Text] [Related]
14. Efficacy of a Single-Task ERP Measure to Evaluate Cognitive Workload During a Novel Exergame. Ghani U; Signal N; Niazi IK; Taylor D Front Hum Neurosci; 2021; 15():742384. PubMed ID: 34566610 [TBL] [Abstract][Full Text] [Related]
15. Measurement of attentional reserve and mental effort for cognitive workload assessment under various task demands during dual-task walking. Shaw EP; Rietschel JC; Hendershot BD; Pruziner AL; Miller MW; Hatfield BD; Gentili RJ Biol Psychol; 2018 Apr; 134():39-51. PubMed ID: 29378284 [TBL] [Abstract][Full Text] [Related]
16. EEG-ERP dynamics in a visual Continuous Performance Test. Karamacoska D; Barry RJ; De Blasio FM; Steiner GZ Int J Psychophysiol; 2019 Dec; 146():249-260. PubMed ID: 31648022 [TBL] [Abstract][Full Text] [Related]
17. EEG phase states at stimulus onset in a variable-ISI Go/NoGo task: Effects on ERP components. Barry RJ; Fogarty JS; De Blasio FM; Karamacoska D Biol Psychol; 2018 Apr; 134():89-102. PubMed ID: 29462656 [TBL] [Abstract][Full Text] [Related]
18. Using principal components analysis to examine resting state EEG in relation to task performance. Karamacoska D; Barry RJ; Steiner GZ Psychophysiology; 2019 May; 56(5):e13327. PubMed ID: 30613986 [TBL] [Abstract][Full Text] [Related]
19. N-back training and transfer effects revealed by behavioral responses and EEG. Pergher V; Wittevrongel B; Tournoy J; Schoenmakers B; Van Hulle MM Brain Behav; 2018 Nov; 8(11):e01136. PubMed ID: 30350357 [TBL] [Abstract][Full Text] [Related]
20. Theta rhythmicities following expected visual and auditory targets. Demiralp T; Başar E Int J Psychophysiol; 1992 Sep; 13(2):147-60. PubMed ID: 1399754 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]