These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 32707506)

  • 41. Simultaneous saccharification and co-fermentation of crystalline cellulose and sugar cane bagasse hemicellulose hydrolysate to lactate by a thermotolerant acidophilic Bacillus sp.
    Patel MA; Ou MS; Ingram LO; Shanmugam KT
    Biotechnol Prog; 2005; 21(5):1453-60. PubMed ID: 16209550
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Bacillus sp. strain P38: an efficient producer of L-lactate from cellulosic hydrolysate, with high tolerance for 2-furfural.
    Peng L; Wang L; Che C; Yang G; Yu B; Ma Y
    Bioresour Technol; 2013 Dec; 149():169-76. PubMed ID: 24096283
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Microbial production of biopolymers from the renewable resource wheat straw.
    Gasser E; Ballmann P; Dröge S; Bohn J; König H
    J Appl Microbiol; 2014 Oct; 117(4):1035-44. PubMed ID: 24947657
    [TBL] [Abstract][Full Text] [Related]  

  • 44. One-pot production of lactic acid from rice straw pretreated with ionic liquid.
    Yadav N; Nain L; Khare SK
    Bioresour Technol; 2021 Mar; 323():124563. PubMed ID: 33360946
    [TBL] [Abstract][Full Text] [Related]  

  • 45. High L(+)-lactic acid productivity in continuous fermentations using bakery waste and lucerne green juice as renewable substrates.
    Alexandri M; Blanco-Catalá J; Schneider R; Turon X; Venus J
    Bioresour Technol; 2020 Nov; 316():123949. PubMed ID: 32768995
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of compounds released during pretreatment of wheat straw on microbial growth and enzymatic hydrolysis rates.
    Panagiotou G; Olsson L
    Biotechnol Bioeng; 2007 Feb; 96(2):250-8. PubMed ID: 16865730
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Pretreating wheat straw by phosphoric acid plus hydrogen peroxide for enzymatic saccharification and ethanol production at high solid loading.
    Qiu J; Ma L; Shen F; Yang G; Zhang Y; Deng S; Zhang J; Zeng Y; Hu Y
    Bioresour Technol; 2017 Aug; 238():174-181. PubMed ID: 28433905
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Genome-scale modeling for Bacillus coagulans to understand the metabolic characteristics.
    Chen Y; Sun Y; Liu Z; Dong F; Li Y; Wang Y
    Biotechnol Bioeng; 2020 Nov; 117(11):3545-3558. PubMed ID: 32648961
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Biorefinery Concept Employing
    Schroedter L; Streffer F; Streffer K; Unger P; Venus J
    Microorganisms; 2021 Aug; 9(9):. PubMed ID: 34576705
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Production of lactic acid from xylose and wheat straw by Rhizopus oryzae.
    Saito K; Hasa Y; Abe H
    J Biosci Bioeng; 2012 Aug; 114(2):166-9. PubMed ID: 22578599
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Potential inhibitors from wet oxidation of wheat straw and their effect on growth and ethanol production by Thermoanaerobacter mathranii.
    Klinke HB; Thomsen AB; Ahring BK
    Appl Microbiol Biotechnol; 2001 Dec; 57(5-6):631-8. PubMed ID: 11778871
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Enhanced ethanol production by fermentation of rice straw hydrolysate without detoxification using a newly adapted strain of Pichia stipitis.
    Huang CF; Lin TH; Guo GL; Hwang WS
    Bioresour Technol; 2009 Sep; 100(17):3914-20. PubMed ID: 19349164
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Elucidating the Role and Regulation of a Lactate Permease as Lactate Transporter in Bacillus coagulans DSM1.
    Wang Y; Zhang C; Liu G; Ju J; Yu B; Wang L
    Appl Environ Microbiol; 2019 Jul; 85(14):. PubMed ID: 31101607
    [TBL] [Abstract][Full Text] [Related]  

  • 54. One-pot d-lactic acid production using undetoxified acid-pretreated corncob slurry by an adapted Pediococcus acidilactici.
    Qiu Z; Han X; He J; Jiang Y; Wang G; Wang Z; Liu X; Xia J; Xu N; He A; Gu H; Xu J
    Bioresour Technol; 2022 Nov; 363():127993. PubMed ID: 36262001
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Enhanced ethanol production from industrial lignocellulose hydrolysates by a hydrolysate-cofermenting Saccharomyces cerevisiae strain.
    Huang S; Liu T; Peng B; Geng A
    Bioprocess Biosyst Eng; 2019 May; 42(5):883-896. PubMed ID: 30820665
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Process for calcium xylonate production as a concrete admixture derived from in-situ fermentation of wheat straw pre-hydrolysate.
    Zhou X; Zhou X; Tang X; Xu Y
    Bioresour Technol; 2018 Aug; 261():288-293. PubMed ID: 29677656
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Potential inhibitors from wet oxidation of wheat straw and their effect on ethanol production of Saccharomyces cerevisiae: wet oxidation and fermentation by yeast.
    Klinke HB; Olsson L; Thomsen AB; Ahring BK
    Biotechnol Bioeng; 2003 Mar; 81(6):738-47. PubMed ID: 12529889
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Ethanol production from wheat straw hemicellulose hydrolysate by Pichia stipitis.
    Nigam JN
    J Biotechnol; 2001 Apr; 87(1):17-27. PubMed ID: 11267696
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Production of optically pure L-lactic acid from lignocellulosic hydrolysate by using a newly isolated and D-lactate dehydrogenase gene-deficient Lactobacillus paracasei strain.
    Kuo YC; Yuan SF; Wang CA; Huang YJ; Guo GL; Hwang WS
    Bioresour Technol; 2015 Dec; 198():651-7. PubMed ID: 26433790
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effect of dilute acid pretreatment on the saccharification and fermentation of rye straw.
    Robak K; Balcerek M; Dziekońska-Kubczak U; Dziugan P
    Biotechnol Prog; 2019 May; 35(3):e2789. PubMed ID: 30773839
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.