These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 32707652)
1. Cellulose-Multiwall Carbon Nanotube Fiber Actuator Behavior in Aqueous and Organic Electrolyte. Elhi F; Peikolainen AL; Kiefer R; Tamm T Materials (Basel); 2020 Jul; 13(14):. PubMed ID: 32707652 [TBL] [Abstract][Full Text] [Related]
2. Wider Potential Windows of Cellulose Multiwall Carbon Nanotube Fibers Leading to Qualitative Multifunctional Changes in an Organic Electrolyte. Kiefer R; Elhi F; Peikolainen AL; Tamm T Polymers (Basel); 2021 Dec; 13(24):. PubMed ID: 34960990 [TBL] [Abstract][Full Text] [Related]
3. Polypyrrole with Phosphor Tungsten Acid and Carbide-Derived Carbon: Change of Solvent in Electropolymerization and Linear Actuation. Tran CB; Zondaka Z; Le QB; Velmurugan BK; Kiefer R Materials (Basel); 2021 Oct; 14(21):. PubMed ID: 34771828 [TBL] [Abstract][Full Text] [Related]
4. Deterministic Role of Carbon Nanotube-Substrate Coupling for Ultrahigh Actuation in Bilayer Electrothermal Actuators. Ghosh R; Telpande S; Gowda P; Reddy SK; Kumar P; Misra A ACS Appl Mater Interfaces; 2020 Jul; 12(26):29959-29970. PubMed ID: 32500702 [TBL] [Abstract][Full Text] [Related]
5. Carbon nanotube and graphene-based bioinspired electrochemical actuators. Kong L; Chen W Adv Mater; 2014 Feb; 26(7):1025-43. PubMed ID: 24338697 [TBL] [Abstract][Full Text] [Related]
6. Wet-Spinning Carbon Nanotube/Shape Memory Polymer Composite Fibers with High Actuation Stress and Predesigned Shape Change. Li M; Chen K; Zhang D; Ye Z; Yang Z; Wang Q; Jiang Z; Zhang Y; Shang Y; Cao A Adv Sci (Weinh); 2024 Oct; 11(38):e2404913. PubMed ID: 39119888 [TBL] [Abstract][Full Text] [Related]
7. Cation-Selective Actuator-Sensor Response of Microcrystalline Cellulose Multi-Walled Carbon Nanotubes of Different Electrolytes Using Propylene Carbonate Solvent. Elhi F; Le QB; Kiefer R Polymers (Basel); 2024 Jan; 16(3):. PubMed ID: 38337226 [TBL] [Abstract][Full Text] [Related]
8. Polypyrrole Polyethylene Composite for Controllable Linear Actuators in Different Organic Electrolytes. Khuyen NQ; Nguyen NT; Kiefer R Materials (Basel); 2022 Jan; 15(2):. PubMed ID: 35057260 [TBL] [Abstract][Full Text] [Related]
9. Carbon Nanotube Yarn for Fiber-Shaped Electrical Sensors, Actuators, and Energy Storage for Smart Systems. Jang Y; Kim SM; Spinks GM; Kim SJ Adv Mater; 2020 Feb; 32(5):e1902670. PubMed ID: 31403227 [TBL] [Abstract][Full Text] [Related]
10. Comparative Analysis of Fluorinated Anions for Polypyrrole Linear Actuator Electrolytes. Khuyen NQ; Zondaka Z; Harjo M; Torop J; Tamm T; Kiefer R Polymers (Basel); 2019 May; 11(5):. PubMed ID: 31083347 [TBL] [Abstract][Full Text] [Related]
12. Fast-response, agile and functional soft actuators based on highly-oriented carbon nanotube thin films. Li Q; Liu C Nanotechnology; 2019 Nov; 31(8):. PubMed ID: 31627200 [TBL] [Abstract][Full Text] [Related]
13. Fabrication of high-performance carbon nanotube/copper composite fibers by interface thiol-modification. Guo L; Li H; Liu D; Zhou Y; Dong L; Zhu S; Wu Y; Yong Z; Kang L; Jin H; Li Q Nanotechnology; 2022 Apr; 33(28):. PubMed ID: 35390779 [TBL] [Abstract][Full Text] [Related]
14. Review on design strategies and applications of flexible cellulose‑carbon nanotube functional composites. Heng W; Weihua L; Bachagha K Carbohydr Polym; 2023 Dec; 321():121306. PubMed ID: 37739536 [TBL] [Abstract][Full Text] [Related]
15. A Photoactuator Based on Stiffness-Variable Carbon Nanotube Nanocomposite Yarn. Xu L; Peng Q; Zhao X; Li P; Xu J; He X ACS Appl Mater Interfaces; 2020 Sep; 12(36):40711-40718. PubMed ID: 32805842 [TBL] [Abstract][Full Text] [Related]
16. Fabrication and Characterization of a Novel Smart-Polymer Actuator with Nanodispersed CNT/Pd Composite Interfacial Electrodes. Ru J; Zhao D; Zhu Z; Wang Y Polymers (Basel); 2022 Aug; 14(17):. PubMed ID: 36080568 [TBL] [Abstract][Full Text] [Related]
17. Cellulose acetate/multi-wall carbon nanotube/Ag nanofiber composite for antibacterial applications. Jatoi AW; Ogasawara H; Kim IS; Ni QQ Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110679. PubMed ID: 32204107 [TBL] [Abstract][Full Text] [Related]
18. Humidity- and light-driven actuators based on carbon nanotube-coated paper and polymer composite. Zhou P; Chen L; Yao L; Weng M; Zhang W Nanoscale; 2018 May; 10(18):8422-8427. PubMed ID: 29637961 [TBL] [Abstract][Full Text] [Related]
19. Flexible Torsional Photoactuators Based on MXene-Carbon Nanotube-Paraffin Wax Films. Ding J; Ma H; Xiao X; Li Q; Liu K; Zhang X ACS Appl Mater Interfaces; 2022 Dec; 14(51):57171-57179. PubMed ID: 36515685 [TBL] [Abstract][Full Text] [Related]
20. Shape-Memory Polymers Based on Carbon Nanotube Composites. da Silva MM; Proença MP; Covas JA; Paiva MC Micromachines (Basel); 2024 Jun; 15(6):. PubMed ID: 38930718 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]