BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 32707715)

  • 1. Optimizing an Osteosarcoma-Fibroblast Coculture Model to Study Antitumoral Activity of Magnesium-Based Biomaterials.
    Globig P; Willumeit-Römer R; Martini F; Mazzoni E; Luthringer-Feyerabend BJC
    Int J Mol Sci; 2020 Jul; 21(14):. PubMed ID: 32707715
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of degradable osteosynthesis plates of MgYREZr alloy on cell function of human osteoblasts, fibroblasts and osteosarcoma cells.
    Naujokat H; Gülses A; Wiltfang J; Açil Y
    J Mater Sci Mater Med; 2017 Aug; 28(8):126. PubMed ID: 28711997
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of the mechanisms and effects of Mg-Ag-Y alloy on the tumor growth and metastasis of the MG63 osteosarcoma cell line.
    Dai Y; Tang Y; Xu X; Luo Z; Zhang Y; Li Z; Lin Z; Zhao S; Zeng M; Sun B; Cheng L; Zhu J; Xiong Z; Long H; Zhu Y; Yu K
    J Biomed Mater Res B Appl Biomater; 2019 Nov; 107(8):2537-2548. PubMed ID: 30779430
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unique antitumor property of the Mg-Ca-Sr alloys with addition of Zn.
    Wu Y; He G; Zhang Y; Liu Y; Li M; Wang X; Li N; Li K; Zheng G; Zheng Y; Yin Q
    Sci Rep; 2016 Feb; 6():21736. PubMed ID: 26907515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro interactions of blood, platelet, and fibroblast with biodegradable magnesium-zinc-strontium alloys.
    Nguyen TY; Cipriano AF; Guan RG; Zhao ZY; Liu H
    J Biomed Mater Res A; 2015 Sep; 103(9):2974-86. PubMed ID: 25690931
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Slow degrading Mg-based materials induce tumor cell dormancy on an osteosarcoma-fibroblast coculture model.
    Globig P; Willumeit-Römer R; Martini F; Mazzoni E; Luthringer-Feyerabend BJC
    Bioact Mater; 2022 Oct; 16():320-333. PubMed ID: 35386318
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro studies of biomedical magnesium alloys in a simulated physiological environment: a review.
    Xin Y; Hu T; Chu PK
    Acta Biomater; 2011 Apr; 7(4):1452-9. PubMed ID: 21145436
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Imaging the interaction of α
    Tome Y; Kiyuna T; Uehara F; Bouvet M; Tsuchiya H; Kanaya F; Hoffman RM
    J Cell Biochem; 2019 Jan; 120(1):283-289. PubMed ID: 30145815
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro cytotoxicity of galvanically coupled magnesium-titanium particles on human osteosarcoma SAOS2 cells: A potential cancer therapy.
    Kim J; Gilbert JL
    J Biomed Mater Res B Appl Biomater; 2019 Jan; 107(1):178-189. PubMed ID: 29635780
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro corrosion and biocompatibility of binary magnesium alloys.
    Gu X; Zheng Y; Cheng Y; Zhong S; Xi T
    Biomaterials; 2009 Feb; 30(4):484-98. PubMed ID: 19000636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Porous biodegradable EW62 medical implants resist tumor cell growth.
    Hakimi O; Ventura Y; Goldman J; Vago R; Aghion E
    Mater Sci Eng C Mater Biol Appl; 2016 Apr; 61():516-25. PubMed ID: 26838879
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro and in vivo studies on magnesium alloys to evaluate the feasibility of their use in obstetrics and gynecology.
    Bao G; Fan Q; Ge D; Sun M; Guo H; Xia D; Liu Y; Liu J; Wu S; He B; Zheng Y
    Acta Biomater; 2019 Oct; 97():623-636. PubMed ID: 31386929
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical and Biological Properties of a Biodegradable Mg-Zn-Ca Porous Alloy.
    Zhang YQ; Li Y; Liu H; Bai J; Bao NR; Zhang Y; He P; Zhao JN; Tao L; Xue F; Zhou GX; Fan GT
    Orthop Surg; 2018 May; 10(2):160-168. PubMed ID: 29767463
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring a wider range of Mg-Ca-Zn metallic glass as biocompatible alloys using combinatorial sputtering.
    Li J; Gittleson FS; Liu Y; Liu J; Loye AM; McMillon-Brown L; Kyriakides TR; Schroers J; Taylor AD
    Chem Commun (Camb); 2017 Jul; 53(59):8288-8291. PubMed ID: 28665424
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-term in vivo degradation behaviour and biocompatibility of the magnesium alloy ZEK100 for use as a biodegradable bone implant.
    Dziuba D; Meyer-Lindenberg A; Seitz JM; Waizy H; Angrisani N; Reifenrath J
    Acta Biomater; 2013 Nov; 9(10):8548-60. PubMed ID: 22922249
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical Strength, Biodegradation, and in Vitro and in Vivo Biocompatibility of Zn Biomaterials.
    Zhu D; Cockerill I; Su Y; Zhang Z; Fu J; Lee KW; Ma J; Okpokwasili C; Tang L; Zheng Y; Qin YX; Wang Y
    ACS Appl Mater Interfaces; 2019 Feb; 11(7):6809-6819. PubMed ID: 30693753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biocompatibility of rapidly solidified magnesium alloy RS66 as a temporary biodegradable metal.
    Willbold E; Kalla K; Bartsch I; Bobe K; Brauneis M; Remennik S; Shechtman D; Nellesen J; Tillmann W; Vogt C; Witte F
    Acta Biomater; 2013 Nov; 9(10):8509-17. PubMed ID: 23416472
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation of fluorescently labeled cell lines, C3A hepatoma cells, and human adult skin fibroblasts to study coculture models.
    Samluk A; Zakrzewska KE; Pluta KD
    Artif Organs; 2013 Jul; 37(7):E123-30. PubMed ID: 23581829
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mussel-inspired functionalization of PEO/PCL composite coating on a biodegradable AZ31 magnesium alloy.
    Tian P; Xu D; Liu X
    Colloids Surf B Biointerfaces; 2016 May; 141():327-337. PubMed ID: 26874118
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biocompatibility, osseointegration, antibacterial and mechanical properties of nanocrystalline Ti-Cu alloy as a new orthopedic material.
    Moniri Javadhesari S; Alipour S; Akbarpour MR
    Colloids Surf B Biointerfaces; 2020 May; 189():110889. PubMed ID: 32114284
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.