These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 32707822)

  • 1. An Improved Relative GNSS Tracking Method Utilizing Single Frequency Receivers.
    Yang W; Liu Y; Liu F
    Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32707822
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Improved Long-Period Precise Time-Relative Positioning Method Based on RTS Data.
    Lu Y; Ji S; Tu R; Weng D; Lu X; Chen W
    Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33374254
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Improved Ambiguity-Free Method for Precise GNSS Positioning with Utilizing Single Frequency Receivers.
    Yang W; Liu Y; Liu F
    Sensors (Basel); 2020 Feb; 20(3):. PubMed ID: 32041098
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Smart Device-Supported BDS/GNSS Real-Time Kinematic Positioning for Sub-Meter-Level Accuracy in Urban Location-Based Services.
    Wang L; Li Z; Zhao J; Zhou K; Wang Z; Yuan H
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 28009835
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GNSS Precise Relative Positioning Using A Priori Relative Position in a GNSS Harsh Environment.
    Kim E
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33672979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decimeter-Level Accuracy for Smartphone Real-Time Kinematic Positioning Implementing a Robust Kalman Filter Approach and Inertial Navigation System Infusion in Complex Urban Environments.
    Pourmina AH; Alizadeh MM; Schuh H
    Sensors (Basel); 2024 Sep; 24(18):. PubMed ID: 39338652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tightly-Coupled Integration of Multi-GNSS Single-Frequency RTK and MEMS-IMU for Enhanced Positioning Performance.
    Li T; Zhang H; Niu X; Gao Z
    Sensors (Basel); 2017 Oct; 17(11):. PubMed ID: 29077070
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Feasibility of Using Low-Cost Dual-Frequency GNSS Receivers for Land Surveying.
    Wielgocka N; Hadas T; Kaczmarek A; Marut G
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33799512
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-GNSS PPP-RTK: From Large- to Small-Scale Networks.
    Nadarajah N; Khodabandeh A; Wang K; Choudhury M; Teunissen PJG
    Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29614040
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Instantaneous Best Integer Equivariant Position Estimation Using Google Pixel 4 Smartphones for Single- and Dual-Frequency, Multi-GNSS Short-Baseline RTK.
    Yong CZ; Harima K; Rubinov E; McClusky S; Odolinski R
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632180
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real Time Precise Relative Positioning with Moving Multiple Reference Receivers.
    Li H; Gao S; Li L; Jia C; Zhao L
    Sensors (Basel); 2018 Jun; 18(7):. PubMed ID: 29966371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Precise and Robust RTK-GNSS Positioning in Urban Environments with Dual-Antenna Configuration.
    Fan P; Li W; Cui X; Lu M
    Sensors (Basel); 2019 Aug; 19(16):. PubMed ID: 31426540
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Tightly Coupled RTK/INS Algorithm with Ambiguity Resolution in the Position Domain for Ground Vehicles in Harsh Urban Environments.
    Li W; Li W; Cui X; Zhao S; Lu M
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 29973573
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Global Navigation Satellite System Real-Time Kinematic Positioning Framework for Precise Operation of a Swarm of Moving Vehicles.
    Kim E; Kim SK
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298285
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-Epoch, Single-Frequency Multi-GNSS L5 RTK under High-Elevation Masking.
    Wang K; Chen P; Teunissen PJG
    Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30832343
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Extended Kalman Filter and Back Propagation Neural Network Algorithm Positioning Method Based on Anti-lock Brake Sensor and Global Navigation Satellite System Information.
    Hu J; Wu Z; Qin X; Geng H; Gao Z
    Sensors (Basel); 2018 Aug; 18(9):. PubMed ID: 30134633
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving the Performance of Time-Relative GNSS Precise Positioning in Remote Areas.
    He K; Weng D; Ji S; Wang Z; Chen W; Lu Y; Nie Z
    Sensors (Basel); 2021 Jan; 21(1):. PubMed ID: 33406691
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An SVM Based Weight Scheme for Improving Kinematic GNSS Positioning Accuracy with Low-Cost GNSS Receiver in Urban Environments.
    Lyu Z; Gao Y
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33352876
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study of Global Navigation Satellite System Receivers' Accuracy for Unmanned Vehicles.
    Miletiev R; Petkov PZ; Yordanov R; Brusev T
    Sensors (Basel); 2024 Sep; 24(18):. PubMed ID: 39338653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-Cost GNSS and PPP-RTK: Investigating the Capabilities of the u-blox ZED-F9P Module.
    Robustelli U; Cutugno M; Pugliano G
    Sensors (Basel); 2023 Jul; 23(13):. PubMed ID: 37447924
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.