These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 32708027)
1. Hollow Fiber Membranes of PCL and PCL/Graphene as Scaffolds with Potential to Develop In Vitro Blood-Brain Barrier Models. Mantecón-Oria M; Diban N; Berciano MT; Rivero MJ; David O; Lafarga M; Tapia O; Urtiaga A Membranes (Basel); 2020 Jul; 10(8):. PubMed ID: 32708027 [TBL] [Abstract][Full Text] [Related]
2. On the quest of reliable 3D dynamic Mantecón-Oria M; Rivero MJ; Diban N; Urtiaga A Front Bioeng Biotechnol; 2022; 10():1056162. PubMed ID: 36483778 [TBL] [Abstract][Full Text] [Related]
3. Influence of the properties of different graphene-based nanomaterials dispersed in polycaprolactone membranes on astrocytic differentiation. Mantecón-Oria M; Tapia O; Lafarga M; Berciano MT; Munuera JM; Villar-Rodil S; Paredes JI; Rivero MJ; Diban N; Urtiaga A Sci Rep; 2022 Aug; 12(1):13408. PubMed ID: 35927565 [TBL] [Abstract][Full Text] [Related]
5. Hydrolytic Degradation and Mechanical Stability of Poly(ε-Caprolactone)/Reduced Graphene Oxide Membranes as Scaffolds for In Vitro Neural Tissue Regeneration. Sánchez-González S; Diban N; Urtiaga A Membranes (Basel); 2018 Mar; 8(1):. PubMed ID: 29510552 [TBL] [Abstract][Full Text] [Related]
6. Evidences of the Effect of GO and rGO in PCL Membranes on the Differentiation and Maturation of Human Neural Progenitor Cells. Sánchez-González S; Diban N; Bianchi F; Ye H; Urtiaga A Macromol Biosci; 2018 Nov; 18(11):e1800195. PubMed ID: 30253070 [TBL] [Abstract][Full Text] [Related]
7. Enhancement of hydrophilicity, biocompatibility and biodegradability of poly(ε-caprolactone) electrospun nanofiber scaffolds using poly(ethylene glycol) and poly(L-lactide-co-ε-caprolactone-co-glycolide) as additives for soft tissue engineering. Arbade GK; Srivastava J; Tripathi V; Lenka N; Patro TU J Biomater Sci Polym Ed; 2020 Sep; 31(13):1648-1670. PubMed ID: 32402230 [TBL] [Abstract][Full Text] [Related]
8. Poly(ε-Caprolactone) Hollow Fiber Membranes for the Biofabrication of a Vascularized Human Liver Tissue. Salerno S; Tasselli F; Drioli E; De Bartolo L Membranes (Basel); 2020 May; 10(6):. PubMed ID: 32471264 [TBL] [Abstract][Full Text] [Related]
9. Optimization of electrospun fibrous membranes for in vitro modeling of blood-brain barrier. Pensabene V; Crowder SW; Balikov DA; Lee JB; Sung HJ Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():125-128. PubMed ID: 28268295 [TBL] [Abstract][Full Text] [Related]
10. Material Characterization and Bioanalysis of Hybrid Scaffolds of Carbon Nanomaterial and Polymer Nanofibers. Srikanth M; Asmatulu R; Cluff K; Yao L ACS Omega; 2019 Mar; 4(3):5044-5051. PubMed ID: 30949614 [TBL] [Abstract][Full Text] [Related]
11. 3D Plotting using Camphene as Pore-regulating Agent to Produce Hierarchical Macro/micro-porous Poly(ε-caprolactone)/calcium phosphate Composite Scaffolds. Choi JW; Maeng WY; Koh YH; Lee H; Kim HE Materials (Basel); 2019 Aug; 12(17):. PubMed ID: 31438474 [TBL] [Abstract][Full Text] [Related]
12. Solvent system effects on the physical and mechanical properties of electrospun Poly(ε-caprolactone) scaffolds for in vitro lung models. Salimbeigi G; Cahill PA; McGuinness GB J Mech Behav Biomed Mater; 2022 Dec; 136():105493. PubMed ID: 36252423 [TBL] [Abstract][Full Text] [Related]
13. Electroactive graphene composite scaffolds for cardiac tissue engineering. Hitscherich P; Aphale A; Gordan R; Whitaker R; Singh P; Xie LH; Patra P; Lee EJ J Biomed Mater Res A; 2018 Nov; 106(11):2923-2933. PubMed ID: 30325093 [TBL] [Abstract][Full Text] [Related]
14. An endothelial and astrocyte co-culture model of the blood-brain barrier utilizing an ultra-thin, nanofabricated silicon nitride membrane. Ma SH; Lepak LA; Hussain RJ; Shain W; Shuler ML Lab Chip; 2005 Jan; 5(1):74-85. PubMed ID: 15616743 [TBL] [Abstract][Full Text] [Related]
15. Osteoinduction and proliferation of bone-marrow stromal cells in three-dimensional poly (ε-caprolactone)/ hydroxyapatite/collagen scaffolds. Wang T; Yang X; Qi X; Jiang C J Transl Med; 2015 May; 13():152. PubMed ID: 25952675 [TBL] [Abstract][Full Text] [Related]
16. In-situ polymerized polypyrrole nanoparticles immobilized poly(ε-caprolactone) electrospun conductive scaffolds for bone tissue engineering. Maharjan B; Kaliannagounder VK; Jang SR; Awasthi GP; Bhattarai DP; Choukrani G; Park CH; Kim CS Mater Sci Eng C Mater Biol Appl; 2020 Sep; 114():111056. PubMed ID: 32994008 [TBL] [Abstract][Full Text] [Related]
17. Zein Increases the Cytoaffinity and Biodegradability of Scaffolds 3D-Printed with Zein and Poly(ε-caprolactone) Composite Ink. Jing L; Wang X; Liu H; Lu Y; Bian J; Sun J; Huang D ACS Appl Mater Interfaces; 2018 Jun; 10(22):18551-18559. PubMed ID: 29763548 [TBL] [Abstract][Full Text] [Related]
18. Functionalized PCL/HA nanocomposites as microporous membranes for bone regeneration. Basile MA; d'Ayala GG; Malinconico M; Laurienzo P; Coudane J; Nottelet B; Ragione FD; Oliva A Mater Sci Eng C Mater Biol Appl; 2015 Mar; 48():457-68. PubMed ID: 25579947 [TBL] [Abstract][Full Text] [Related]
20. Production of Poly(ε-Caprolactone)/Hydroxyapatite Composite Scaffolds with a Tailored Macro/Micro-Porous Structure, High Mechanical Properties, and Excellent Bioactivity. Kim JW; Shin KH; Koh YH; Hah MJ; Moon J; Kim HE Materials (Basel); 2017 Sep; 10(10):. PubMed ID: 28937605 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]