These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 32708043)

  • 1. Preliminary In Vitro Evaluation of Chitosan-Graphene Oxide Scaffolds on Osteoblastic Adhesion, Proliferation, and Early Differentiation.
    Wong SHM; Lim SS; Tiong TJ; Show PL; Zaid HFM; Loh HS
    Int J Mol Sci; 2020 Jul; 21(15):. PubMed ID: 32708043
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bone tissue engineering gelatin-hydroxyapatite/graphene oxide scaffolds with the ability to release vitamin D: fabrication, characterization, and in vitro study.
    Mahdavi R; Belgheisi G; Haghbin-Nazarpak M; Omidi M; Khojasteh A; Solati-Hashjin M
    J Mater Sci Mater Med; 2020 Oct; 31(11):97. PubMed ID: 33135110
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced bone formation in electrospun poly(L-lactic-co-glycolic acid)-tussah silk fibroin ultrafine nanofiber scaffolds incorporated with graphene oxide.
    Shao W; He J; Sang F; Wang Q; Chen L; Cui S; Ding B
    Mater Sci Eng C Mater Biol Appl; 2016 May; 62():823-34. PubMed ID: 26952489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nano-pearl powder/chitosan-hyaluronic acid porous composite scaffold and preliminary study of its osteogenesis mechanism.
    Li X; Xu P; Cheng Y; Zhang W; Zheng B; Wang Q
    Mater Sci Eng C Mater Biol Appl; 2020 Jun; 111():110749. PubMed ID: 32279810
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and Application of Scaffolds of Chitosan-Graphene Oxide by the Freeze-Drying Method for Tissue Regeneration.
    Valencia C; Valencia CH; Zuluaga F; Valencia ME; Mina JH; Grande-Tovar CD
    Molecules; 2018 Oct; 23(10):. PubMed ID: 30332775
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of the New-Type Vascular Endothelial Growth Factor-Silk Fibroin-Chitosan Three-Dimensional Scaffolds for Bone Tissue Engineering and In Vitro Evaluation.
    Tong S; Xu DP; Liu ZM; Du Y; Wang XK
    J Craniofac Surg; 2016 Mar; 27(2):509-15. PubMed ID: 26890455
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and evaluation of chitosan/chondroitin sulfate/nano-bioglass based composite scaffold for bone tissue engineering.
    Singh BN; Veeresh V; Mallick SP; Jain Y; Sinha S; Rastogi A; Srivastava P
    Int J Biol Macromol; 2019 Jul; 133():817-830. PubMed ID: 31002908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Graphene oxide incorporated polycaprolactone/chitosan/collagen electrospun scaffold: Enhanced osteogenic properties for bone tissue engineering.
    Aidun A; Safaei Firoozabady A; Moharrami M; Ahmadi A; Haghighipour N; Bonakdar S; Faghihi S
    Artif Organs; 2019 Oct; 43(10):E264-E281. PubMed ID: 31013365
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strontium hydroxyapatite/chitosan nanohybrid scaffolds with enhanced osteoinductivity for bone tissue engineering.
    Lei Y; Xu Z; Ke Q; Yin W; Chen Y; Zhang C; Guo Y
    Mater Sci Eng C Mater Biol Appl; 2017 Mar; 72():134-142. PubMed ID: 28024569
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Osteoblastic cellular responses on ionically crosslinked chitosan-tripolyphosphate fibrous 3-D mesh scaffolds.
    Pati F; Kalita H; Adhikari B; Dhara S
    J Biomed Mater Res A; 2013 Sep; 101(9):2526-37. PubMed ID: 23359556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chitosan/hydroxyapatite (HA)/hydroxypropylmethyl cellulose (HPMC) spongy scaffolds-synthesis and evaluation as potential alveolar bone substitutes.
    Iqbal H; Ali M; Zeeshan R; Mutahir Z; Iqbal F; Nawaz MAH; Shahzadi L; Chaudhry AA; Yar M; Luan S; Khan AF; Rehman IU
    Colloids Surf B Biointerfaces; 2017 Dec; 160():553-563. PubMed ID: 29024920
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The fundamental parameters of chitosan in polymer scaffolds affecting osteoblasts (MC3T3-E1).
    Suphasiriroj W; Yotnuengnit P; Surarit R; Pichyangkura R
    J Mater Sci Mater Med; 2009 Jan; 20(1):309-20. PubMed ID: 18791666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro cytocompatibility evaluation of chitosan/graphene oxide 3D scaffold composites designed for bone tissue engineering.
    Dinescu S; Ionita M; Pandele AM; Galateanu B; Iovu H; Ardelean A; Costache M; Hermenean A
    Biomed Mater Eng; 2014; 24(6):2249-56. PubMed ID: 25226924
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemical synthesis of three-dimensional porous reduced graphene oxide film: Preparation and in vitro osteogenic activity evaluation.
    Tian Z; Huang L; Pei X; Chen J; Wang T; Yang T; Qin H; Sui L; Wang J
    Colloids Surf B Biointerfaces; 2017 Jul; 155():150-158. PubMed ID: 28419944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a nanocomposite scaffold of gelatin-alginate-graphene oxide for bone tissue engineering.
    Purohit SD; Bhaskar R; Singh H; Yadav I; Gupta MK; Mishra NC
    Int J Biol Macromol; 2019 Jul; 133():592-602. PubMed ID: 31004650
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Incorporation of zinc oxide nanoparticles into chitosan-collagen 3D porous scaffolds: Effect on morphology, mechanical properties and cytocompatibility of 3D porous scaffolds.
    Ullah S; Zainol I; Idrus RH
    Int J Biol Macromol; 2017 Nov; 104(Pt A):1020-1029. PubMed ID: 28668615
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chitosan-based hydrogel tissue scaffolds made by 3D plotting promotes osteoblast proliferation and mineralization.
    Liu IH; Chang SH; Lin HY
    Biomed Mater; 2015 May; 10(3):035004. PubMed ID: 25970802
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of Silk Fibroin/Chitosan 3D Porous Scaffold and In Vitro Cytology.
    Zeng S; Liu L; Shi Y; Qiu J; Fang W; Rong M; Guo Z; Gao W
    PLoS One; 2015; 10(6):e0128658. PubMed ID: 26083846
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of adenoviral vascular endothelial growth factor-activated chitosan/hydroxyapatite scaffold for engineering vascularized bone tissue using human osteoblasts: In vitro and in vivo studies.
    Koç A; Finkenzeller G; Elçin AE; Stark GB; Elçin YM
    J Biomater Appl; 2014 Nov; 29(5):748-60. PubMed ID: 25062670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Graphene Oxide-A Tool for the Preparation of Chemically Crosslinking Free Alginate-Chitosan-Collagen Scaffolds for Bone Tissue Engineering.
    Kolanthai E; Sindu PA; Khajuria DK; Veerla SC; Kuppuswamy D; Catalani LH; Mahapatra DR
    ACS Appl Mater Interfaces; 2018 Apr; 10(15):12441-12452. PubMed ID: 29589895
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.