These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 32708045)

  • 1. Capillary-Driven Flow Microfluidics Combined with Smartphone Detection: An Emerging Tool for Point-of-Care Diagnostics.
    Hassan SU; Tariq A; Noreen Z; Donia A; Zaidi SZJ; Bokhari H; Zhang X
    Diagnostics (Basel); 2020 Jul; 10(8):. PubMed ID: 32708045
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and Fabrication of Capillary-Driven Flow Device for Point-Of-Care Diagnostics.
    Hassan SU; Zhang X
    Biosensors (Basel); 2020 Apr; 10(4):. PubMed ID: 32326641
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lab-on-a-Chip Devices for Point-of-Care Medical Diagnostics.
    Arshavsky-Graham S; Segal E
    Adv Biochem Eng Biotechnol; 2022; 179():247-265. PubMed ID: 32435872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lab-on-a-Disc for Point-of-Care Infection Diagnostics.
    Sunkara V; Kumar S; Sabaté Del Río J; Kim I; Cho YK
    Acc Chem Res; 2021 Oct; 54(19):3643-3655. PubMed ID: 34516092
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gravity-Driven Microfluidic Siphons: Fluidic Characterization and Application to Quantitative Immunoassays.
    Reis NM; Needs SH; Jegouic SM; Gill KK; Sirivisoot S; Howard S; Kempe J; Bola S; Al-Hakeem K; Jones IM; Prommool T; Luangaram P; Avirutnan P; Puttikhunt C; Edwards AD
    ACS Sens; 2021 Dec; 6(12):4338-4348. PubMed ID: 34854666
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Capillary-driven microfluidics: impacts of 3D manufacturing on bioanalytical devices.
    Azizian P; Casals-Terré J; Ricart J; Cabot JM
    Analyst; 2023 Jun; 148(12):2657-2675. PubMed ID: 37166188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Saliva-based microfluidic point-of-care diagnostic.
    Pittman TW; Decsi DB; Punyadeera C; Henry CS
    Theranostics; 2023; 13(3):1091-1108. PubMed ID: 36793864
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prospects of Microfluidic Technology in Nucleic Acid Detection Approaches.
    Mumtaz Z; Rashid Z; Ali A; Arif A; Ameen F; AlTami MS; Yousaf MZ
    Biosensors (Basel); 2023 May; 13(6):. PubMed ID: 37366949
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Portable microfluidic and smartphone-based devices for monitoring of cardiovascular diseases at the point of care.
    Hu J; Cui X; Gong Y; Xu X; Gao B; Wen T; Lu TJ; Xu F
    Biotechnol Adv; 2016; 34(3):305-20. PubMed ID: 26898179
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetic Digital Microfluidics for Point-of-Care Testing: Where Are We Now?
    Zhang Y
    Curr Med Chem; 2021; 28(31):6323-6336. PubMed ID: 32881657
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic Point-of-Care Devices: New Trends and Future Prospects for eHealth Diagnostics.
    Mejía-Salazar JR; Rodrigues Cruz K; Materón Vásques EM; Novais de Oliveira O
    Sensors (Basel); 2020 Mar; 20(7):. PubMed ID: 32244343
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and Fabrication of Optical Flow Cell for Multiplex Detection of β-lactamase in Microchannels.
    Hassan SU; Zhang X
    Micromachines (Basel); 2020 Apr; 11(4):. PubMed ID: 32260509
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomarker Detection in Early Diagnosis of Cancer: Recent Achievements in Point-of-Care Devices Based on Paper Microfluidics.
    Asci Erkocyigit B; Ozufuklar O; Yardim A; Guler Celik E; Timur S
    Biosensors (Basel); 2023 Mar; 13(3):. PubMed ID: 36979600
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Point-of-care diagnostics for infectious diseases: From methods to devices.
    Wang C; Liu M; Wang Z; Li S; Deng Y; He N
    Nano Today; 2021 Apr; 37():101092. PubMed ID: 33584847
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Point-of-Care Diagnostics for Farm Animal Diseases: From Biosensors to Integrated Lab-on-Chip Devices.
    Manessis G; Gelasakis AI; Bossis I
    Biosensors (Basel); 2022 Jun; 12(7):. PubMed ID: 35884258
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sub-nanoliter, real-time flow monitoring in microfluidic chips using a portable device and smartphone.
    Temiz Y; Delamarche E
    Sci Rep; 2018 Jul; 8(1):10603. PubMed ID: 30006576
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Patterning Wettability for Open-Surface Fluidic Manipulation: Fundamentals and Applications.
    Sinha Mahapatra P; Ganguly R; Ghosh A; Chatterjee S; Lowrey S; Sommers AD; Megaridis CM
    Chem Rev; 2022 Nov; 122(22):16752-16801. PubMed ID: 36195098
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidics-Based Point-of-Care Testing (POCT) Devices in Dealing with Waves of COVID-19 Pandemic: The Emerging Solution.
    Kumar A; Parihar A; Panda U; Parihar DS
    ACS Appl Bio Mater; 2022 May; 5(5):2046-2068. PubMed ID: 35473316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Present technology and future trends in point-of-care microfluidic diagnostics.
    Kulinsky L; Noroozi Z; Madou M
    Methods Mol Biol; 2013; 949():3-23. PubMed ID: 23329432
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advances in point-of-care technologies for molecular diagnostics.
    Zarei M
    Biosens Bioelectron; 2017 Dec; 98():494-506. PubMed ID: 28728010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.