These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 32708045)

  • 21. Aspects of Point-of-Care Diagnostics for Personalized Health Wellness.
    Kumar S; Nehra M; Khurana S; Dilbaghi N; Kumar V; Kaushik A; Kim KH
    Int J Nanomedicine; 2021; 16():383-402. PubMed ID: 33488077
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Paper based microfluidics: A forecast toward the most affordable and rapid point-of-care devices.
    Sinha A; Basu M; Chandna P
    Prog Mol Biol Transl Sci; 2022; 186(1):109-158. PubMed ID: 35033281
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High-performance PCB-based capillary pumps for affordable point-of-care diagnostics.
    Vasilakis N; Papadimitriou KI; Morgan H; Prodromakis T
    Microfluid Nanofluidics; 2017; 21(6):103. PubMed ID: 32025228
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Integrated microfluidic pneumatic circuit for point-of-care molecular diagnostics.
    Shin S; Kim B; Kim YJ; Choi S
    Biosens Bioelectron; 2019 May; 133():169-176. PubMed ID: 30928735
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A new microchannel capillary flow assay (MCFA) platform with lyophilized chemiluminescence reagents for a smartphone-based POCT detecting malaria.
    Ghosh S; Aggarwal K; U VT; Nguyen T; Han J; Ahn CH
    Microsyst Nanoeng; 2020; 6():5. PubMed ID: 34567620
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microfluidics in Haemostasis: A Review.
    Jigar Panchal H; Kent NJ; Knox AJS; Harris LF
    Molecules; 2020 Feb; 25(4):. PubMed ID: 32075008
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Towards practical sample preparation in point-of-care testing: user-friendly microfluidic devices.
    Park J; Han DH; Park JK
    Lab Chip; 2020 Apr; 20(7):1191-1203. PubMed ID: 32119024
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multiplexed capillary microfluidic immunoassay with smartphone data acquisition for parallel mycotoxin detection.
    Machado JMD; Soares RRG; Chu V; Conde JP
    Biosens Bioelectron; 2018 Jan; 99():40-46. PubMed ID: 28735045
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Capillary microfluidics in microchannels: from microfluidic networks to capillaric circuits.
    Olanrewaju A; Beaugrand M; Yafia M; Juncker D
    Lab Chip; 2018 Aug; 18(16):2323-2347. PubMed ID: 30010168
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microfluidics Based Point-of-Care Diagnostics.
    Pandey CM; Augustine S; Kumar S; Kumar S; Nara S; Srivastava S; Malhotra BD
    Biotechnol J; 2018 Jan; 13(1):. PubMed ID: 29178532
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transposing Lateral Flow Immunoassays to Capillary-Driven Microfluidics Using Self-Coalescence Modules and Capillary-Assembled Receptor Carriers.
    Hemmig E; Temiz Y; Gökçe O; Lovchik RD; Delamarche E
    Anal Chem; 2020 Jan; 92(1):940-946. PubMed ID: 31860276
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Digital monitoring of the microchannel filling flow dynamics using a non-contactless smartphone-based nano-liter precision flow velocity meter.
    Xu W; Atik AY; Beker L; Ceylan Koydemir H
    Biosens Bioelectron; 2024 May; 252():116130. PubMed ID: 38417285
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Applications of smartphone-based near-infrared (NIR) imaging, measurement, and spectroscopy technologies to point-of-care (POC) diagnostics.
    Huang W; Luo S; Yang D; Zhang S
    J Zhejiang Univ Sci B; 2021 Mar; 22(3):171-189. PubMed ID: 33719223
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Smartphone-based clinical diagnostics: towards democratization of evidence-based health care.
    Hernández-Neuta I; Neumann F; Brightmeyer J; Ba Tis T; Madaboosi N; Wei Q; Ozcan A; Nilsson M
    J Intern Med; 2019 Jan; 285(1):19-39. PubMed ID: 30079527
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Smartphone based on-chip fluorescence imaging and capillary flow velocity measurement for detecting ROR1+ cancer cells from buffy coat blood samples on dual-layer paper microfluidic chip.
    Ulep TH; Zenhausern R; Gonzales A; Knoff DS; Lengerke Diaz PA; Castro JE; Yoon JY
    Biosens Bioelectron; 2020 Apr; 153():112042. PubMed ID: 32056660
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microfluidic Point-of-Care Diagnostics for Multi-Disease Detection Using Optical Techniques: A Review.
    Ahmadsaidulu S; Banik O; Kumar P; Kumar S; Banoth E
    IEEE Trans Nanobioscience; 2024 Jan; 23(1):140-147. PubMed ID: 37399163
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microfluidic Point-of-Care (POC) Devices in Early Diagnosis: A Review of Opportunities and Challenges.
    Yang SM; Lv S; Zhang W; Cui Y
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214519
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A perspective on paper-based microfluidics: Current status and future trends.
    Li X; Ballerini DR; Shen W
    Biomicrofluidics; 2012 Mar; 6(1):11301-1130113. PubMed ID: 22662067
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Capillary driven microfluidic sequential flow device for point-of-need ELISA: COVID-19 serology testing.
    Carrell C; Jang I; Link J; Terry JS; Call Z; Panraksa Y; Chailapakul O; Dandy DS; Geiss BJ; Henry CS
    Anal Methods; 2023 Jun; 15(22):2721-2728. PubMed ID: 37099406
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Smartphone technology facilitates point-of-care nucleic acid diagnosis: a beginner's guide.
    Rajendran VK; Bakthavathsalam P; Bergquist PL; Sunna A
    Crit Rev Clin Lab Sci; 2021 Mar; 58(2):77-100. PubMed ID: 32609551
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.