These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 32708045)

  • 41. Microfluidic pressure in paper (μPiP): rapid prototyping and low-cost liquid handling for on-chip diagnostics.
    Islam MN; Yost JW; Gagnon ZR
    Analyst; 2022 Feb; 147(4):587-596. PubMed ID: 35037668
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Opportunities and challenges for the application of microfluidic technologies in point-of-care veterinary diagnostics.
    Busin V; Wells B; Kersaudy-Kerhoas M; Shu W; Burgess ST
    Mol Cell Probes; 2016 Oct; 30(5):331-341. PubMed ID: 27430150
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Toward one-step point-of-care immunodiagnostics using capillary-driven microfluidics and PDMS substrates.
    Gervais L; Delamarche E
    Lab Chip; 2009 Dec; 9(23):3330-7. PubMed ID: 19904397
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Point-of-care cancer diagnostic devices: From academic research to clinical translation.
    Syedmoradi L; Norton ML; Omidfar K
    Talanta; 2021 Apr; 225():122002. PubMed ID: 33592810
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Improving design features and air bubble manipulation techniques for a single-step sandwich electrochemical ELISA incorporating commercial electrodes into capillary-flow driven immunoassay devices.
    Kaewarsa P; Schenkel MS; Rahn KL; Laiwattanapaisal W; Henry CS
    Analyst; 2024 Mar; 149(7):2034-2044. PubMed ID: 38407468
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Integrating Microfluidics and Electronics in Point-of-Care Diagnostics: Current and Future Challenges.
    Annese VF; Hu C
    Micromachines (Basel); 2022 Nov; 13(11):. PubMed ID: 36363944
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Fabrication, Flow Control, and Applications of Microfluidic Paper-Based Analytical Devices.
    Lim H; Jafry AT; Lee J
    Molecules; 2019 Aug; 24(16):. PubMed ID: 31394856
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Smart Microfluidics: Synergy of Machine Learning and Microfluidics in the Development of Medical Diagnostics for Chronic and Emerging Infectious Diseases.
    Madukwe DUP; Mike-Ogburia MI; Nduka N; Nzeobi J
    Crit Rev Biomed Eng; 2023; 51(1):41-58. PubMed ID: 37522540
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Integrated Microfluidic Nucleic Acid Isolation, Isothermal Amplification, and Amplicon Quantification.
    Mauk MG; Liu C; Song J; Bau HH
    Microarrays (Basel); 2015 Oct; 4(4):474-89. PubMed ID: 27600235
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Immuno-biosensor on a chip: a self-powered microfluidic-based electrochemical biosensing platform for point-of-care quantification of proteins.
    Haghayegh F; Salahandish R; Zare A; Khalghollah M; Sanati-Nezhad A
    Lab Chip; 2021 Dec; 22(1):108-120. PubMed ID: 34860233
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Microfluidic-integrated biosensors: prospects for point-of-care diagnostics.
    Kumar S; Kumar S; Ali MA; Anand P; Agrawal VV; John R; Maji S; Malhotra BD
    Biotechnol J; 2013 Nov; 8(11):1267-79. PubMed ID: 24019250
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Capillary Flow-Driven Microfluidics Combined with a Paper Device for Fast User-Friendly Detection of Heavy Metals in Water.
    Aryal P; Brack E; Alexander T; Henry CS
    Anal Chem; 2023 Apr; 95(13):5820-5827. PubMed ID: 36952654
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Detector-Free Photothermal Bar-Chart Microfluidic Chips (PT-Chips) for Visual Quantitative Detection of Biomarkers.
    Zhou W; Fu G; Li X
    Anal Chem; 2021 Jun; 93(21):7754-7762. PubMed ID: 33999603
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Magnetic nanoparticles in microfluidics-based diagnostics: an appraisal.
    Sharma S; Bhatia V
    Nanomedicine (Lond); 2021 Jun; 16(15):1329-1342. PubMed ID: 34027677
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Vacuum-driven power-free microfluidics utilizing the gas solubility or permeability of polydimethylsiloxane (PDMS).
    Xu L; Lee H; Jetta D; Oh KW
    Lab Chip; 2015 Oct; 15(20):3962-79. PubMed ID: 26329518
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Rapid and Low-Cost CRP Measurement by Integrating a Paper-Based Microfluidic Immunoassay with Smartphone (CRP-Chip).
    Dong M; Wu J; Ma Z; Peretz-Soroka H; Zhang M; Komenda P; Tangri N; Liu Y; Rigatto C; Lin F
    Sensors (Basel); 2017 Mar; 17(4):. PubMed ID: 28346363
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Microfluidics for COVID-19: From Current Work to Future Perspective.
    Li Q; Zhou X; Wang Q; Liu W; Chen C
    Biosensors (Basel); 2023 Jan; 13(2):. PubMed ID: 36831930
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A flux-adaptable pump-free microfluidics-based self-contained platform for multiplex cancer biomarker detection.
    Dai B; Yin C; Wu J; Li W; Zheng L; Lin F; Han X; Fu Y; Zhang D; Zhuang S
    Lab Chip; 2021 Jan; 21(1):143-153. PubMed ID: 33185235
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Detection of Bacterial and Viral Pathogens Using Photonic Point-of-Care Devices.
    Nath P; Kabir A; Khoubafarin Doust S; Kreais ZJ; Ray A
    Diagnostics (Basel); 2020 Oct; 10(10):. PubMed ID: 33086578
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Microvalves for Applications in Centrifugal Microfluidics.
    Peshin S; Madou M; Kulinsky L
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433550
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.