These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 32708133)
21. Smooth gap tuning strategy for cove-type graphene nanoribbons. de Sousa Araújo Cassiano T; Monteiro FF; Evaristo de Sousa L; Magela E Silva G; de Oliveira Neto PH RSC Adv; 2020 Jul; 10(45):26937-26943. PubMed ID: 35515758 [TBL] [Abstract][Full Text] [Related]
22. Bottom-Up On-Surface Synthesis of Two-Dimensional Graphene Nanoribbon Networks and Their Thermoelectric Properties. Kojima T; Nakae T; Xu Z; Saravanan C; Watanabe K; Nakamura Y; Sakaguchi H Chem Asian J; 2019 Dec; 14(23):4400-4407. PubMed ID: 31724299 [TBL] [Abstract][Full Text] [Related]
23. Magnetotransport Properties of Graphene Nanoribbons with Zigzag Edges. Wu S; Liu B; Shen C; Li S; Huang X; Lu X; Chen P; Wang G; Wang D; Liao M; Zhang J; Zhang T; Wang S; Yang W; Yang R; Shi D; Watanabe K; Taniguchi T; Yao Y; Wang W; Zhang G Phys Rev Lett; 2018 May; 120(21):216601. PubMed ID: 29883135 [TBL] [Abstract][Full Text] [Related]
24. Accurate prediction of the electronic properties of low-dimensional graphene derivatives using a screened hybrid density functional. Barone V; Hod O; Peralta JE; Scuseria GE Acc Chem Res; 2011 Apr; 44(4):269-79. PubMed ID: 21388164 [TBL] [Abstract][Full Text] [Related]
25. Influence of defect locations and nitrogen doping configurations on the mechanical properties of armchair graphene nanoribbons. Senturk AE; Oktem AS; Konukman AES J Mol Model; 2018 Jan; 24(2):43. PubMed ID: 29352756 [TBL] [Abstract][Full Text] [Related]
26. Defect symmetry influence on electronic transport of zigzag nanoribbons. Zeng H; Leburton JP; Xu Y; Wei J Nanoscale Res Lett; 2011 Mar; 6(1):254. PubMed ID: 21711777 [TBL] [Abstract][Full Text] [Related]
27. Orbitally Matched Edge-Doping in Graphene Nanoribbons. Durr RA; Haberer D; Lee YL; Blackwell R; Kalayjian AM; Marangoni T; Ihm J; Louie SG; Fischer FR J Am Chem Soc; 2018 Jan; 140(2):807-813. PubMed ID: 29243927 [TBL] [Abstract][Full Text] [Related]
28. Armchair-edged nanoribbon as a bottleneck to electronic total transmission through a topologically nontrivial graphene nanojunction. Jiang L; Liu Z; Zhao X; Zheng Y J Phys Condens Matter; 2016 Mar; 28(8):085501. PubMed ID: 26828909 [TBL] [Abstract][Full Text] [Related]
29. Role of defects in the mechanical properties of graphene-copper heterostructures. Felix TT; Chávez-Castillo MR; Meza-Montes L Nanotechnology; 2022 May; 33(33):. PubMed ID: 35512650 [TBL] [Abstract][Full Text] [Related]
30. A guide to the design of electronic properties of graphene nanoribbons. Yazyev OV Acc Chem Res; 2013 Oct; 46(10):2319-28. PubMed ID: 23282074 [TBL] [Abstract][Full Text] [Related]
31. On-Surface Synthesis of NBN-Doped Zigzag-Edged Graphene Nanoribbons. Fu Y; Yang H; Gao Y; Huang L; Berger R; Liu J; Lu H; Cheng Z; Du S; Gao HJ; Feng X Angew Chem Int Ed Engl; 2020 Jun; 59(23):8873-8879. PubMed ID: 32134547 [TBL] [Abstract][Full Text] [Related]
34. Distinguishing Zigzag and Armchair Edges on Graphene Nanoribbons by X-ray Photoelectron and Raman Spectroscopies. Kim J; Lee N; Min YH; Noh S; Kim NK; Jung S; Joo M; Yamada Y ACS Omega; 2018 Dec; 3(12):17789-17796. PubMed ID: 31458375 [TBL] [Abstract][Full Text] [Related]
36. Investigation on the mechanical properties and fracture phenomenon of silicon doped graphene by molecular dynamics simulation. Rahman MH; Mitra S; Motalab M; Bose P RSC Adv; 2020 Aug; 10(52):31318-31332. PubMed ID: 35520677 [TBL] [Abstract][Full Text] [Related]
37. Synthetic Tailoring of Graphene Nanostructures with Zigzag-Edged Topologies: Progress and Perspectives. Liu J; Feng X Angew Chem Int Ed Engl; 2020 Dec; 59(52):23386-23401. PubMed ID: 32720441 [TBL] [Abstract][Full Text] [Related]
38. Family behavior and Dirac bands in armchair nanoribbons with 4-8 defect lines. Gillen R; Maultzsch J J Phys Condens Matter; 2024 Apr; 36(29):. PubMed ID: 38579744 [TBL] [Abstract][Full Text] [Related]
39. Room-temperature magnetic order on zigzag edges of narrow graphene nanoribbons. Magda GZ; Jin X; Hagymási I; Vancsó P; Osváth Z; Nemes-Incze P; Hwang C; Biró LP; Tapasztó L Nature; 2014 Oct; 514(7524):608-11. PubMed ID: 25355361 [TBL] [Abstract][Full Text] [Related]
40. Electronic properties of four typical zigzag-edged graphyne nanoribbons. Yu G; Liu Z; Gao W; Zheng Y J Phys Condens Matter; 2013 Jul; 25(28):285502. PubMed ID: 23793076 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]