These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 32708133)

  • 41. Toward cove-edged low band gap graphene nanoribbons.
    Liu J; Li BW; Tan YZ; Giannakopoulos A; Sanchez-Sanchez C; Beljonne D; Ruffieux P; Fasel R; Feng X; Müllen K
    J Am Chem Soc; 2015 May; 137(18):6097-103. PubMed ID: 25909566
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Influence of Defect Number, Distribution Continuity and Orientation on Tensile Strengths of the CNT-Based Networks: A Molecular Dynamics Study.
    Shi X; He X; Sun L; Liu X
    Nanoscale Res Lett; 2022 Jan; 17(1):15. PubMed ID: 35032241
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of substitutional and vacancy defects on the electrical and mechanical properties of 2D-hexagonal boron nitride.
    Sagar TC; Chinthapenta V
    J Mol Model; 2020 Jul; 26(8):192. PubMed ID: 32620980
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of defects on the intrinsic strength and stiffness of graphene.
    Zandiatashbar A; Lee GH; An SJ; Lee S; Mathew N; Terrones M; Hayashi T; Picu CR; Hone J; Koratkar N
    Nat Commun; 2014; 5():3186. PubMed ID: 24458268
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mechanical response of bilayer silicene nanoribbons under uniaxial tension.
    Chávez-Castillo MR; Rodríguez-Meza MA; Meza-Montes L
    RSC Adv; 2018 Mar; 8(20):10785-10793. PubMed ID: 35541532
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Probing the Magnetism of Topological End States in 5-Armchair Graphene Nanoribbons.
    Lawrence J; Brandimarte P; Berdonces-Layunta A; Mohammed MSG; Grewal A; Leon CC; Sánchez-Portal D; de Oteyza DG
    ACS Nano; 2020 Apr; 14(4):4499-4508. PubMed ID: 32101402
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effect of Vacancy Defects on the Vibration Frequency of Graphene Nanoribbons.
    Guo H; Wang J
    Nanomaterials (Basel); 2022 Feb; 12(5):. PubMed ID: 35269251
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mechanics of penta-graphene with vacancy defects under large amplitude tensile and shear loading.
    Han T; Wang X; Zhang X; Scarpa F; Tang C
    Nanotechnology; 2021 Apr; 32(27):. PubMed ID: 33711833
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Anomalous strength characteristics of Stone-Thrower-Wales defects in graphene sheets - a molecular dynamics study.
    Juneja A; Rajasekaran G
    Phys Chem Chem Phys; 2018 Jun; 20(22):15203-15215. PubMed ID: 29789830
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Graphene Nanoribbons with Atomically Sharp Edges Produced by AFM Induced Self-Folding.
    Chang JS; Kim S; Sung HJ; Yeon J; Chang KJ; Li X; Kim S
    Small; 2018 Nov; 14(47):e1803386. PubMed ID: 30307700
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Chaotic dynamics of graphene and graphene nanoribbons.
    Hillebrand M; Many Manda B; Kalosakas G; Gerlach E; Skokos C
    Chaos; 2020 Jun; 30(6):063150. PubMed ID: 32611115
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Emergent properties and trends of a new class of carbon nanocomposites: graphene nanoribbons encapsulated in a carbon nanotube.
    Kou L; Tang C; Wehling T; Frauenheim T; Chen C
    Nanoscale; 2013 Apr; 5(8):3306-14. PubMed ID: 23463363
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Hierarchical graphene nanoribbon assemblies feature unique electronic and mechanical properties.
    Xu Z; Buehler MJ
    Nanotechnology; 2009 Sep; 20(37):375704. PubMed ID: 19706941
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Atomistic modeling of mechanical properties of polycrystalline graphene.
    Mortazavi B; Cuniberti G
    Nanotechnology; 2014 May; 25(21):215704. PubMed ID: 24785113
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mechanical properties and current-carrying capacity of Al reinforced with graphene/BN nanoribbons: a computational study.
    Kvashnin DG; Ghorbani-Asl M; Shtansky DV; Golberg D; Krasheninnikov AV; Sorokin PB
    Nanoscale; 2016 Dec; 8(48):20080-20089. PubMed ID: 27892592
    [TBL] [Abstract][Full Text] [Related]  

  • 56. From graphene to graphene ribbons: atomically precise cutting via hydrogenation pseudo-crack.
    Qi C; Peng W; Zhou J; Yi L; Wang J; Zhang Y
    Nanotechnology; 2020 Oct; 31(41):415705. PubMed ID: 32369784
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Size and chirality dependent elastic properties of graphene nanoribbons under uniaxial tension.
    Zhao H; Min K; Aluru NR
    Nano Lett; 2009 Aug; 9(8):3012-5. PubMed ID: 19719113
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A Molecular Dynamics Study of the Mechanical Properties of Twisted Bilayer Graphene.
    Liu A; Peng Q
    Micromachines (Basel); 2018 Aug; 9(9):. PubMed ID: 30424373
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Optical spectrum of bottom-up graphene nanoribbons: towards efficient atom-thick excitonic solar cells.
    Villegas CE; Mendonça PB; Rocha AR
    Sci Rep; 2014 Oct; 4():6579. PubMed ID: 25301001
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Generating pure spin current with spin-dependent Seebeck effect in ferromagnetic zigzag graphene nanoribbons.
    Zhou Y; Zheng X
    J Phys Condens Matter; 2019 Aug; 31(31):315301. PubMed ID: 31022711
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.