These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 32708133)

  • 61. Wafer-scale fabrication and growth dynamics of suspended graphene nanoribbon arrays.
    Suzuki H; Kaneko T; Shibuta Y; Ohno M; Maekawa Y; Kato T
    Nat Commun; 2016 Jun; 7():11797. PubMed ID: 27250877
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Recovery from mechanical degradation of graphene by defect enlargement.
    Zheng B; Gu GX
    Nanotechnology; 2019 Nov; 31(8):085707. PubMed ID: 31683264
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Super-Resolution Imaging of Clickable Graphene Nanoribbons Decorated with Fluorescent Dyes.
    Joshi D; Hauser M; Veber G; Berl A; Xu K; Fischer FR
    J Am Chem Soc; 2018 Aug; 140(30):9574-9580. PubMed ID: 29974743
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Bandgap engineering of zigzag graphene nanoribbons by manipulating edge states via defective boundaries.
    Zhang A; Wu Y; Ke SH; Feng YP; Zhang C
    Nanotechnology; 2011 Oct; 22(43):435702. PubMed ID: 21967829
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Spin gapless semiconductor-metal-half-metal properties in nitrogen-doped zigzag graphene nanoribbons.
    Li Y; Zhou Z; Shen P; Chen Z
    ACS Nano; 2009 Jul; 3(7):1952-8. PubMed ID: 19555066
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Control of thermal and electronic transport in defect-engineered graphene nanoribbons.
    Haskins J; Kınacı A; Sevik C; Sevinçli H; Cuniberti G; Cağın T
    ACS Nano; 2011 May; 5(5):3779-87. PubMed ID: 21452884
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The effect of water on gold supported chiral graphene nanoribbons: rupture of conjugation by an alternating hydrogenation pattern.
    Berdonces-Layunta A; Matěj A; Jiménez-Martín A; Lawrence J; Mohammed MSG; Wang T; Mallada B; de la Torre B; Martínez A; Vilas-Varela M; Nieman R; Lischka H; Nachtigallová D; Peña D; Jelínek P; de Oteyza DG
    Nanoscale; 2024 Jan; 16(2):734-741. PubMed ID: 38086686
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Topological Properties of Gapped Graphene Nanoribbons with Spatial Symmetries.
    Lin KS; Chou MY
    Nano Lett; 2018 Nov; 18(11):7254-7260. PubMed ID: 30350656
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Half-metallicity in graphene nanoribbons with topological defects at edge.
    Bhattacharjee J
    J Chem Phys; 2012 Sep; 137(9):094705. PubMed ID: 22957584
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Beyond conventional nonlinear fracture mechanics in graphene nanoribbons.
    Shimada T; Huang K; Van Lich L; Ozaki N; Jang B; Kitamura T
    Nanoscale; 2020 Sep; 12(35):18363-18370. PubMed ID: 32870230
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Ab Initio Properties of Hybrid Cove-Edged Graphene Nanoribbons as Metallic Electrodes for Peptide Sequencing via Transverse Tunneling Current.
    Zollo G; Civitarese T
    ACS Omega; 2022 Jul; 7(29):25164-25170. PubMed ID: 35910163
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Advance in Close-Edged Graphene Nanoribbon: Property Investigation and Structure Fabrication.
    He M; Dong J; Wang H; Xue H; Wu Q; Xin B; Gao W; He X; Yu J; Sun H; Ding F; Zhang J
    Small; 2019 Jul; 15(29):e1804473. PubMed ID: 30663240
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Molecular Investigation of Mechanical Properties and Fracture Behavior of Graphene Aerogel.
    Patil SP; Shendye P; Markert B
    J Phys Chem B; 2020 Jul; 124(28):6132-6139. PubMed ID: 32544326
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Magnetic edge states and coherent manipulation of graphene nanoribbons.
    Slota M; Keerthi A; Myers WK; Tretyakov E; Baumgarten M; Ardavan A; Sadeghi H; Lambert CJ; Narita A; Müllen K; Bogani L
    Nature; 2018 May; 557(7707):691-695. PubMed ID: 29849157
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Direct experimental determination of onset of electron-electron interactions in gap opening of zigzag graphene nanoribbons.
    Li YY; Chen MX; Weinert M; Li L
    Nat Commun; 2014 Jul; 5():4311. PubMed ID: 24986261
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Highly stretchable MoS2 kirigami.
    Hanakata PZ; Qi Z; Campbell DK; Park HS
    Nanoscale; 2016 Jan; 8(1):458-63. PubMed ID: 26628005
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Mechanical properties and electronic structure of edge-doped graphene nanoribbons with F, O, and Cl atoms.
    Piriz S; Fernández-Werner L; Pardo H; Jasen P; Faccio R; Mombrú ÁW
    Phys Chem Chem Phys; 2017 Aug; 19(32):21474-21480. PubMed ID: 28759072
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Size, structure, and helical twist of graphene nanoribbons controlled by confinement in carbon nanotubes.
    Chamberlain TW; Biskupek J; Rance GA; Chuvilin A; Alexander TJ; Bichoutskaia E; Kaiser U; Khlobystov AN
    ACS Nano; 2012 May; 6(5):3943-53. PubMed ID: 22483078
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Fracture toughness of graphene.
    Zhang P; Ma L; Fan F; Zeng Z; Peng C; Loya PE; Liu Z; Gong Y; Zhang J; Zhang X; Ajayan PM; Zhu T; Lou J
    Nat Commun; 2014 Apr; 5():3782. PubMed ID: 24777167
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Electronic and magnetic properties of H-terminated graphene nanoribbons deposited on the topological insulator Sb2Te3.
    Zhang W; Hajiheidari F; Li Y; Mazzarello R
    Sci Rep; 2016 Jul; 6():29009. PubMed ID: 27405058
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.