These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 32708185)

  • 1. Estimation of Soil Arsenic Content with Hyperspectral Remote Sensing.
    Wei L; Pu H; Wang Z; Yuan Z; Yan X; Cao L
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32708185
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of Arsenic Content in Soil Based on Laboratory and Field Reflectance Spectroscopy.
    Wei L; Yuan Z; Yu M; Huang C; Cao L
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31510072
    [No Abstract]   [Full Text] [Related]  

  • 3. Soil organic carbon content estimation with laboratory-based visible-near-infrared reflectance spectroscopy: feature selection.
    Shi T; Chen Y; Liu H; Wang J; Wu G
    Appl Spectrosc; 2014; 68(8):831-7. PubMed ID: 25061784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hyperspectral Characteristic Band Selection and Estimation Content of Soil Petroleum Hydrocarbon Based on GARF-PLSR.
    Shi P; Jiang Q; Li Z
    J Imaging; 2023 Apr; 9(4):. PubMed ID: 37103238
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hyperspectral indirect inversion of heavy-metal copper in reclaimed soil of iron ore area.
    Shen Q; Xia K; Zhang S; Kong C; Hu Q; Yang S
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Nov; 222():117191. PubMed ID: 31247388
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance of hyperspectral data in predicting and mapping zinc concentration in soil.
    Sun W; Liu S; Zhang X; Zhu H
    Sci Total Environ; 2022 Jun; 824():153766. PubMed ID: 35151742
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimation of arsenic in agricultural soils using hyperspectral vegetation indices of rice.
    Shi T; Liu H; Chen Y; Wang J; Wu G
    J Hazard Mater; 2016 May; 308():243-52. PubMed ID: 26844405
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Hyperspectral Study of Estimating Nitrification Microorganism in Wetland Soils].
    Wei YX; Wang LW
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Oct; 36(10):3254-60. PubMed ID: 30246949
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Inversion of Soil Organic Matter Content Using Hyperspectral Data Based on Continuous Wavelet Transformation].
    Yu L; Hong YS; Zhou Y; Zhu Q
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 May; 36(5):1428-33. PubMed ID: 30001021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Soil copper concentration map in mining area generated from AHSI remote sensing imagery.
    Sun W; Liu S; Wang M; Zhang X; Shang K; Liu Q
    Sci Total Environ; 2023 Feb; 860():160511. PubMed ID: 36442635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hyperspectral-based Inversion of Heavy Metal Content in the Soil of Coal Mining Areas.
    Hou L; Li X; Li F
    J Environ Qual; 2019 Jan; 48(1):57-63. PubMed ID: 30640357
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Studies on the estimation of soil organic matter content based on hyper-spectrum].
    Liu L; Shen RP; Ding GX
    Guang Pu Xue Yu Guang Pu Fen Xi; 2011 Mar; 31(3):762-6. PubMed ID: 21595235
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hyperspectral Monitoring of Powdery Mildew Disease Severity in Wheat Based on Machine Learning.
    Feng ZH; Wang LY; Yang ZQ; Zhang YY; Li X; Song L; He L; Duan JZ; Feng W
    Front Plant Sci; 2022; 13():828454. PubMed ID: 35386677
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimation of soil copper content based on fractional-order derivative spectroscopy and spectral characteristic band selection.
    Cui S; Zhou K; Ding R; Cheng Y; Jiang G
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Jul; 275():121190. PubMed ID: 35364408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimating the distribution trend of soil heavy metals in mining area from HyMap airborne hyperspectral imagery based on ensemble learning.
    Tan K; Ma W; Chen L; Wang H; Du Q; Du P; Yan B; Liu R; Li H
    J Hazard Mater; 2021 Jan; 401():123288. PubMed ID: 32645545
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Quantitative prediction of soil salinity content with visible-near infrared hyper-spectra in northeast China].
    Zhang XG; Huang B; Ji JF; Hu WY; Sun WX; Zhao YC
    Guang Pu Xue Yu Guang Pu Fen Xi; 2012 Aug; 32(8):2075-9. PubMed ID: 23156755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mapping soil arsenic pollution at a brownfield site using satellite hyperspectral imagery and machine learning.
    Jia X; Hou D
    Sci Total Environ; 2023 Jan; 857(Pt 2):159387. PubMed ID: 36240926
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid Estimation of Soil Pb Concentration Based on Spectral Feature Screening and Multi-Strategy Spectral Fusion.
    Zhang Z; Wang Z; Luo Y; Zhang J; Tian D; Zhang Y
    Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37765764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inversion of soil water and salt information based on UAV hyperspectral remote sensing and machine lear-ning.
    Wang YJ; Ding QD; Zhang JH; Chen R; Jia K; Li XL
    Ying Yong Sheng Tai Xue Bao; 2023 Nov; 34(11):3045-3052. PubMed ID: 37997416
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regional Inversion of Soil Heavy Metal Cr Content in Agricultural Land Using Zhuhai-1 Hyperspectral Images.
    Guo H; Yang K; Wu F; Chen Y; Shen J
    Sensors (Basel); 2023 Oct; 23(21):. PubMed ID: 37960456
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.