These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
24. The Roles of Rods, Cones, and Melanopsin in Photoresponses of M4 Intrinsically Photosensitive Retinal Ganglion Cells (ipRGCs) and Optokinetic Visual Behavior. Schroeder MM; Harrison KR; Jaeckel ER; Berger HN; Zhao X; Flannery MP; St Pierre EC; Pateqi N; Jachimska A; Chervenak AP; Wong KY Front Cell Neurosci; 2018; 12():203. PubMed ID: 30050414 [TBL] [Abstract][Full Text] [Related]
25. Melanopsin-dependent persistence and photopotentiation of murine pupillary light responses. Zhu Y; Tu DC; Denner D; Shane T; Fitzgerald CM; Van Gelder RN Invest Ophthalmol Vis Sci; 2007 Mar; 48(3):1268-75. PubMed ID: 17325172 [TBL] [Abstract][Full Text] [Related]
26. Melanopsin: a novel photopigment involved in the photoentrainment of the brain's biological clock? Hannibal J; Fahrenkrug J Ann Med; 2002; 34(5):401-7. PubMed ID: 12452484 [TBL] [Abstract][Full Text] [Related]
27. Residual photosensitivity in mice lacking both rod opsin and cone photoreceptor cyclic nucleotide gated channel 3 alpha subunit. Barnard AR; Appleford JM; Sekaran S; Chinthapalli K; Jenkins A; Seeliger M; Biel M; Humphries P; Douglas RH; Wenzel A; Foster RG; Hankins MW; Lucas RJ Vis Neurosci; 2004; 21(5):675-83. PubMed ID: 15683556 [TBL] [Abstract][Full Text] [Related]
30. Horizontal cells expressing melanopsin x are novel photoreceptors in the avian inner retina. Morera LP; Díaz NM; Guido ME Proc Natl Acad Sci U S A; 2016 Nov; 113(46):13215-13220. PubMed ID: 27789727 [TBL] [Abstract][Full Text] [Related]
31. Melanopsin forms a functional short-wavelength photopigment. Newman LA; Walker MT; Brown RL; Cronin TW; Robinson PR Biochemistry; 2003 Nov; 42(44):12734-8. PubMed ID: 14596587 [TBL] [Abstract][Full Text] [Related]
32. Melatonin suppression is exquisitely sensitive to light and primarily driven by melanopsin in humans. Prayag AS; Najjar RP; Gronfier C J Pineal Res; 2019 May; 66(4):e12562. PubMed ID: 30697806 [TBL] [Abstract][Full Text] [Related]
33. How rod, cone, and melanopsin photoreceptors come together to enlighten the mammalian circadian clock. Lucas RJ; Lall GS; Allen AE; Brown TM Prog Brain Res; 2012; 199():1-18. PubMed ID: 22877656 [TBL] [Abstract][Full Text] [Related]
34. Melanopsin regulates visual processing in the mouse retina. Barnard AR; Hattar S; Hankins MW; Lucas RJ Curr Biol; 2006 Feb; 16(4):389-95. PubMed ID: 16488873 [TBL] [Abstract][Full Text] [Related]
35. Melanopsin changes in neonatal albino rat independent of rods and cones. Hannibal J; Georg B; Fahrenkrug J Neuroreport; 2007 Jan; 18(1):81-5. PubMed ID: 17259866 [TBL] [Abstract][Full Text] [Related]
36. Melanopsin in the circadian timing system. Beaulé C; Robinson B; Lamont EW; Amir S J Mol Neurosci; 2003; 21(1):73-89. PubMed ID: 14500998 [TBL] [Abstract][Full Text] [Related]
37. Microarray analysis and functional genomics identify novel components of melanopsin signaling. Peirson SN; Oster H; Jones SL; Leitges M; Hankins MW; Foster RG Curr Biol; 2007 Aug; 17(16):1363-72. PubMed ID: 17702581 [TBL] [Abstract][Full Text] [Related]
38. Genetic advances in ophthalmology: the role of melanopsin-expressing, intrinsically photosensitive retinal ganglion cells in the circadian organization of the visual system. Ramsey DJ; Ramsey KM; Vavvas DG Semin Ophthalmol; 2013; 28(5-6):406-21. PubMed ID: 24010846 [TBL] [Abstract][Full Text] [Related]
39. Mapping physiological inputs from multiple photoreceptor systems to dopaminergic amacrine cells in the mouse retina. Zhao X; Wong KY; Zhang DQ Sci Rep; 2017 Aug; 7(1):7920. PubMed ID: 28801634 [TBL] [Abstract][Full Text] [Related]
40. Rods contribute to the light-induced phase shift of the retinal clock in mammals. Calligaro H; Coutanson C; Najjar RP; Mazzaro N; Cooper HM; Haddjeri N; Felder-Schmittbuhl MP; Dkhissi-Benyahya O PLoS Biol; 2019 Mar; 17(3):e2006211. PubMed ID: 30822304 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]