BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 32708384)

  • 1. Space Environmental Chamber for Planetary Studies.
    Vakkada Ramachandran A; Nazarious MI; Mathanlal T; Zorzano MP; Martín-Torres J
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32708384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Planning Implications Related to Sterilization-Sensitive Science Investigations Associated with Mars Sample Return (MSR).
    Velbel MA; Cockell CS; Glavin DP; Marty B; Regberg AB; Smith AL; Tosca NJ; Wadhwa M; Kminek G; Meyer MA; Beaty DW; Carrier BL; Haltigin T; Hays LE; Agee CB; Busemann H; Cavalazzi B; Debaille V; Grady MM; Hauber E; Hutzler A; McCubbin FM; Pratt LM; Smith CL; Summons RE; Swindle TD; Tait KT; Udry A; Usui T; Westall F; Zorzano MP
    Astrobiology; 2022 Jun; 22(S1):S112-S164. PubMed ID: 34904892
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental Investigation of the Atmosphere-Regolith Water Cycle on Present-Day Mars.
    Vakkada Ramachandran A; Zorzano MP; Martín-Torres J
    Sensors (Basel); 2021 Nov; 21(21):. PubMed ID: 34770727
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measuring Electrical Conductivity to Study the Formation of Brines Under Martian Conditions.
    Nazarious MI; Ramachandran AV; Zorzano MP; Martin-Torres J
    J Vis Exp; 2021 Jul; (173):. PubMed ID: 34398148
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mimicking Mars: a vacuum simulation chamber for testing environmental instrumentation for Mars exploration.
    Sobrado JM; Martín-Soler J; Martín-Gago JA
    Rev Sci Instrum; 2014 Mar; 85(3):035111. PubMed ID: 24689624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preliminary Planning for Mars Sample Return (MSR) Curation Activities in a Sample Receiving Facility (SRF).
    Tait KT; McCubbin FM; Smith CL; Agee CB; Busemann H; Cavalazzi B; Debaille V; Hutzler A; Usui T; Kminek G; Meyer MA; Beaty DW; Carrier BL; Haltigin T; Hays LE; Cockell CS; Glavin DP; Grady MM; Hauber E; Marty B; Pratt LM; Regberg AB; Smith AL; Summons RE; Swindle TD; Tosca NJ; Udry A; Velbel MA; Wadhwa M; Westall F; Zorzano MP
    Astrobiology; 2022 Jun; 22(S1):S57-S80. PubMed ID: 34904890
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Survival of endospores of Bacillus subtilis on spacecraft surfaces under simulated martian environments: implications for the forward contamination of Mars.
    Schuerger AC; Mancinelli RL; Kern RG; Rothschild LJ; McKay CP
    Icarus; 2003 Oct; 165(2):253-76. PubMed ID: 14649627
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mimicking Martian dust: An in-vacuum dust deposition system for testing the ultraviolet sensors on the Curiosity rover.
    Sobrado JM; Martín-Soler J; Martín-Gago JA
    Rev Sci Instrum; 2015 Oct; 86(10):105113. PubMed ID: 26520990
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PELS (Planetary Environmental Liquid Simulator): a new type of simulation facility to study extraterrestrial aqueous environments.
    Martin D; Cockell CS
    Astrobiology; 2015 Feb; 15(2):111-8. PubMed ID: 25651097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mimicking the Martian Hydrological Cycle: A Set-Up to Introduce Liquid Water in Vacuum.
    Sobrado JM
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33138024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Survival of Bacillus subtilis endospores on ultraviolet-irradiated rover wheels and Mars regolith under simulated Martian conditions.
    Kerney KR; Schuerger AC
    Astrobiology; 2011 Jun; 11(5):477-85. PubMed ID: 21707388
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Mars Environment Chamber Coupled with Multiple In Situ Spectral Sensors for Mars Exploration.
    Wu Z; Ling Z; Zhang J; Fu X; Liu C; Xin Y; Li B; Qiao L
    Sensors (Basel); 2021 Apr; 21(7):. PubMed ID: 33916546
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atmospheric entry simulations of Mars lander bioload--experiments in support of Beagle 2.
    Sancisi-Frey S; Spry JA; Garry J; Pillinger JM
    Res Microbiol; 2006; 157(1):25-9. PubMed ID: 16431086
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbial preference for chlorate over perchlorate under simulated shallow subsurface Mars-like conditions.
    Fischer FC; Schulze-Makuch D; Heinz J
    Sci Rep; 2024 May; 14(1):11537. PubMed ID: 38773211
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biological space experiments for the simulation of Martian conditions: UV radiation and Martian soil analogues.
    Rettberg P; Rabbow E; Panitz C; Horneck G
    Adv Space Res; 2004; 33(8):1294-301. PubMed ID: 15803617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Survival of Deinococcus geothermalis in Biofilms under Desiccation and Simulated Space and Martian Conditions.
    Frösler J; Panitz C; Wingender J; Flemming HC; Rettberg P
    Astrobiology; 2017 May; 17(5):431-447. PubMed ID: 28520474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnesium Sulfate Salt Solutions and Ices Fail to Protect Serratia liquefaciens from the Biocidal Effects of UV Irradiation under Martian Conditions.
    Mickol RL; Page JL; Schuerger AC
    Astrobiology; 2017 May; 17(5):401-412. PubMed ID: 28459604
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The martian surface.
    Opik EJ
    Science; 1966 Jul; 153(3733):255-65. PubMed ID: 17779983
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mars ultraviolet simulation facility.
    Zill LP; Mack R; DeVincenzi DL
    J Mol Evol; 1979 Dec; 14(1-3):79-89. PubMed ID: 522161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. S.A.M., the Italian Martian simulation chamber.
    Galletta G; Ferri F; Fanti G; D'Alessandro M; Bertoloni G; Pavarin D; Bettanini C; Cozza P; Pretto P; Bianchini G; Debei S
    Orig Life Evol Biosph; 2006 Dec; 36(5-6):625-7. PubMed ID: 17120119
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.