BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 32708405)

  • 1. Sustainable Biomass Activated Carbons as Electrodes for Battery and Supercapacitors-A Mini-Review.
    Dos Reis GS; Larsson SH; de Oliveira HP; Thyrel M; Claudio Lima E
    Nanomaterials (Basel); 2020 Jul; 10(7):. PubMed ID: 32708405
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Short Review on the Electrochemical Performance of Hierarchical and Nitrogen-Doped Activated Biocarbon-Based Electrodes for Supercapacitors.
    Reis GSD; Oliveira HP; Larsson SH; Thyrel M; Claudio Lima E
    Nanomaterials (Basel); 2021 Feb; 11(2):. PubMed ID: 33562379
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lignocellulosic Biomass-Derived Carbon Electrodes for Flexible Supercapacitors: An Overview.
    Hu W; Xiang R; Lin J; Cheng Y; Lu C
    Materials (Basel); 2021 Aug; 14(16):. PubMed ID: 34443094
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facile Synthesis of Sustainable Biomass-Derived Porous Biochars as Promising Electrode Materials for High-Performance Supercapacitor Applications.
    Lima RMAP; Dos Reis GS; Thyrel M; Alcaraz-Espinoza JJ; Larsson SH; de Oliveira HP
    Nanomaterials (Basel); 2022 Mar; 12(5):. PubMed ID: 35269353
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomass derived functional carbon materials for supercapacitor applications.
    Rawat S; Mishra RK; Bhaskar T
    Chemosphere; 2022 Jan; 286(Pt 3):131961. PubMed ID: 34426294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sustainable Biomass-Derived Carbon Electrodes for Potassium and Aluminum Batteries: Conceptualizing the Key Parameters for Improved Performance.
    Reis GSD; Petnikota S; Subramaniyam CM; de Oliveira HP; Larsson S; Thyrel M; Lassi U; García Alvarado F
    Nanomaterials (Basel); 2023 Feb; 13(4):. PubMed ID: 36839133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical Performance of Corn Waste Derived Carbon Electrodes Based on the Intrinsic Biomass Properties.
    Xie K; Zhang W; Ren K; Zhu E; Lu J; Chen J; Yin P; Yang L; Guan X; Wang G
    Materials (Basel); 2023 Jul; 16(14):. PubMed ID: 37512296
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemical Energy Storage Electrodes via Citrus Fruits Derived Carbon: A Minireview.
    Ehsani A; Parsimehr H
    Chem Rec; 2020 Aug; 20(8):820-830. PubMed ID: 32212373
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent advances in food waste-derived nanoporous carbon for energy storage.
    Davidraj JM; Sathish CI; Benzigar MR; Li Z; Zhang X; Bahadur R; Ramadass K; Singh G; Yi J; Kumar P; Vinu A
    Sci Technol Adv Mater; 2024; 25(1):2357062. PubMed ID: 38835629
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biopolymers-Derived Materials for Supercapacitors: Recent Trends, Challenges, and Future Prospects.
    Appiah ES; Dzikunu P; Mahadeen N; Ampong DN; Mensah-Darkwa K; Kumar A; Gupta RK; Adom-Asamoah M
    Molecules; 2022 Oct; 27(19):. PubMed ID: 36235093
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemical energy storage electrodes from fruit biochar.
    Ehsani A; Parsimehr H
    Adv Colloid Interface Sci; 2020 Oct; 284():102263. PubMed ID: 32966966
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent Advances on Nitrogen-Doped Porous Carbons Towards Electrochemical Supercapacitor Applications.
    Komal Zafar H; Zainab S; Masood M; Sohail M; Shoaib Ahmad Shah S; Karim MR; O'Mullane A; Ostrikov KK; Will G; Wahab MA
    Chem Rec; 2024 Jan; 24(1):e202300161. PubMed ID: 37582638
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering the Pores of Biomass-Derived Carbon: Insights for Achieving Ultrahigh Stability at High Power in High-Energy Supercapacitors.
    Thangavel R; Kaliyappan K; Ramasamy HV; Sun X; Lee YS
    ChemSusChem; 2017 Jul; 10(13):2805-2815. PubMed ID: 28453182
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomass-Derived Porous Carbons Derived from Soybean Residues for High Performance Solid State Supercapacitors.
    Chung HY; Pan GT; Hong ZY; Hsu CT; Chong S; Yang TC; Huang CM
    Molecules; 2020 Sep; 25(18):. PubMed ID: 32899765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A state-of-the-art review on biomass-derived carbon materials for supercapacitor applications: From precursor selection to design optimization.
    Hu H; Yan M; Jiang J; Huang A; Cai S; Lan L; Ye K; Chen D; Tang K; Zuo Q; Zeng Y; Tang W; Fu J; Jiang C; Wang Y; Yan Z; He X; Qiao L; Zhao Y
    Sci Total Environ; 2024 Feb; 912():169141. PubMed ID: 38072258
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomass-Derived Carbon Materials for the Electrode of Metal-Air Batteries.
    Lv X; Chen M; Kimura H; Du W; Yang X
    Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36835125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomass-Derived Carbon: A Value-Added Journey Towards Constructing High-Energy Supercapacitors in an Asymmetric Fashion.
    Divya ML; Natarajan S; Lee YS; Aravindan V
    ChemSusChem; 2019 Oct; 12(19):4353-4382. PubMed ID: 31309724
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanocellulose/two dimensional nanomaterials composites for advanced supercapacitor electrodes.
    Liang Q; Wang Y; Yang Y; Xu T; Xu Y; Zhao Q; Heo SH; Kim MS; Jeong YH; Yao S; Song X; Choi SE; Si C
    Front Bioeng Biotechnol; 2022; 10():1024453. PubMed ID: 36267450
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomass-derived nanostructured carbons and their composites as anode materials for lithium ion batteries.
    Long W; Fang B; Ignaszak A; Wu Z; Wang YJ; Wilkinson D
    Chem Soc Rev; 2017 Nov; 46(23):7176-7190. PubMed ID: 29075713
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanocellulose toward Advanced Energy Storage Devices: Structure and Electrochemistry.
    Chen C; Hu L
    Acc Chem Res; 2018 Dec; 51(12):3154-3165. PubMed ID: 30299086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.