These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 32708405)

  • 21. Renewable Carbon Materials as Electrodes for High-Performance Supercapacitors: From Marine Biowaste to High Specific Surface Area Porous Biocarbons.
    Brandão ATSC; State S; Costa R; Potorac P; Vázquez JA; Valcarcel J; Silva AF; Anicai L; Enachescu M; Pereira CM
    ACS Omega; 2023 May; 8(21):18782-18798. PubMed ID: 37273638
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Review on Hydrogel-Based Flexible Supercapacitors for Wearable Applications.
    Tadesse MG; Lübben JF
    Gels; 2023 Jan; 9(2):. PubMed ID: 36826276
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Natural biomass derived hard carbon and activated carbons as electrochemical supercapacitor electrodes.
    Ghosh S; Santhosh R; Jeniffer S; Raghavan V; Jacob G; Nanaji K; Kollu P; Jeong SK; Grace AN
    Sci Rep; 2019 Nov; 9(1):16315. PubMed ID: 31704953
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stretchable Energy Storage Devices Based on Carbon Materials.
    Li L; Wang L; Ye T; Peng H; Zhang Y
    Small; 2021 Dec; 17(48):e2005015. PubMed ID: 33624928
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biomass Nanoarchitectonics for Supercapacitor Applications.
    Shrestha LK; Shrestha RG; Shahi S; Gnawali CL; Adhikari MP; Bhadra BN; Ariga K
    J Oleo Sci; 2023; 72(1):11-32. PubMed ID: 36624057
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Stretchable Supercapacitors: From Materials and Structures to Devices.
    Shao G; Yu R; Chen N; Ye M; Liu XY
    Small Methods; 2021 Jan; 5(1):e2000853. PubMed ID: 34927805
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Schiff-bases for sustainable battery and supercapacitor electrodes.
    Troschke E; Oschatz M; Ilic IK
    Exploration (Beijing); 2021 Dec; 1(3):20210128. PubMed ID: 37323689
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biomass-Derived Porous Carbon Materials for Supercapacitor.
    Yang H; Ye S; Zhou J; Liang T
    Front Chem; 2019; 7():274. PubMed ID: 31069218
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Silk-derived nitrogen-doped porous carbon electrodes with enhanced ionic conductivity for high-performance supercapacitors.
    Sun Y; Xue S; Sun J; Li X; Ou Y; Zhu B; Demir M
    J Colloid Interface Sci; 2023 Sep; 645():297-305. PubMed ID: 37150003
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biomass-derived carbon nanomaterials for sensor applications.
    Malode SJ; Shanbhag MM; Kumari R; Dkhar DS; Chandra P; Shetti NP
    J Pharm Biomed Anal; 2023 Jan; 222():115102. PubMed ID: 36283325
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transition Metal Oxide Electrode Materials for Supercapacitors: A Review of Recent Developments.
    Liang R; Du Y; Xiao P; Cheng J; Yuan S; Chen Y; Yuan J; Chen J
    Nanomaterials (Basel); 2021 May; 11(5):. PubMed ID: 34068548
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Recent Advances and Strategies in MXene-Based Electrodes for Supercapacitors: Applications, Challenges and Future Prospects.
    Prabhakar Vattikuti SV; Shim J; Rosaiah P; Mauger A; Julien CM
    Nanomaterials (Basel); 2023 Dec; 14(1):. PubMed ID: 38202517
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recent developments of post-modification of biochar for electrochemical energy storage.
    Cheng BH; Zeng RJ; Jiang H
    Bioresour Technol; 2017 Dec; 246():224-233. PubMed ID: 28756128
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Valorization of Biomass-Derived Polymers to Functional Biochar Materials for Supercapacitor Applications via Pyrolysis: Advances and Perspectives.
    Yang C; Wu H; Cai M; Zhou Y; Guo C; Han Y; Zhang L
    Polymers (Basel); 2023 Jun; 15(12):. PubMed ID: 37376387
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biomass-Derived Carbon-Based Electrodes for Electrochemical Sensing: A Review.
    Onfray C; Thiam A
    Micromachines (Basel); 2023 Aug; 14(9):. PubMed ID: 37763851
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sustainable Carbon as Efficient Support for Metal-Based Nanocatalyst: Applications in Energy Harvesting and Storage.
    Buaki-Sogó M; Zubizarreta L; García-Pellicer M; Quijano-López A
    Molecules; 2020 Jul; 25(14):. PubMed ID: 32650543
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fast Microwave Synthesis of Hierarchical Porous Carbons from Waste Palm Boosted by Activated Carbons for Supercapacitors.
    Liu C; Chen W; Hong S; Pan M; Jiang M; Wu Q; Mei C
    Nanomaterials (Basel); 2019 Mar; 9(3):. PubMed ID: 30861993
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nanoarchitectures for Metal-Organic Framework-Derived Nanoporous Carbons toward Supercapacitor Applications.
    Salunkhe RR; Kaneti YV; Kim J; Kim JH; Yamauchi Y
    Acc Chem Res; 2016 Dec; 49(12):2796-2806. PubMed ID: 27993000
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Yerba mate: From waste to activated carbon for supercapacitors.
    Jerez F; Ramos PB; Córdoba VE; Ponce MF; Acosta GG; Bavio MA
    J Environ Manage; 2023 Mar; 330():117158. PubMed ID: 36603253
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Unconventional supercapacitors from nanocarbon-based electrode materials to device configurations.
    Liu L; Niu Z; Chen J
    Chem Soc Rev; 2016 Jul; 45(15):4340-63. PubMed ID: 27263796
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.