These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 32708405)

  • 41. Cellulose-Derived Nanostructures as Sustainable Biomass for Supercapacitors: A Review.
    Ji SM; Kumar A
    Polymers (Basel); 2022 Jan; 14(1):. PubMed ID: 35012192
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Electrospun Carbon Nanofibers from Biomass and Biomass Blends-Current Trends.
    Moulefera I; Trabelsi M; Mamun A; Sabantina L
    Polymers (Basel); 2021 Mar; 13(7):. PubMed ID: 33805323
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cellulose-based bionanocomposites in energy storage applications-A review.
    Das AK; Islam MN; Ghosh RK; Maryana R
    Heliyon; 2023 Jan; 9(1):e13028. PubMed ID: 36820173
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Rational Design of Diamond Electrodes.
    Yang N; Jiang X
    Acc Chem Res; 2023 Jan; 56(2):117-127. PubMed ID: 36584242
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Surface chemistry and structure manipulation of graphene-related materials to address the challenges of electrochemical energy storage.
    Sun Y; Sun J; Sanchez JS; Xia Z; Xiao L; Chen R; Palermo V
    Chem Commun (Camb); 2023 Feb; 59(18):2571-2583. PubMed ID: 36749576
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A Review of Supercapacitors Based on Graphene and Redox-Active Organic Materials.
    Li Q; Horn M; Wang Y; MacLeod J; Motta N; Liu J
    Materials (Basel); 2019 Feb; 12(5):. PubMed ID: 30818843
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Intumescent flame retardants inspired template-assistant synthesis of N/P dual-doped three-dimensional porous carbons for high-performance supercapacitors.
    Xu X; Wang T; Wen Y; Wen X; Chen X; Hao C; Lei Q; Mijowska E
    J Colloid Interface Sci; 2022 May; 613():35-46. PubMed ID: 35032775
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Charge storage mechanism in nanoporous carbons and its consequence for electrical double layer capacitors.
    Simon P; Gogotsi Y
    Philos Trans A Math Phys Eng Sci; 2010 Jul; 368(1923):3457-67. PubMed ID: 20566518
    [TBL] [Abstract][Full Text] [Related]  

  • 49. High Mass-Loading Biomass-Based Porous Carbon Electrodes for Supercapacitors: Review and Perspectives.
    Yang X; Lv T; Qiu J
    Small; 2023 Jun; 19(22):e2300336. PubMed ID: 36840663
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Advanced Nanocellulose-Based Composites for Flexible Functional Energy Storage Devices.
    Xu T; Du H; Liu H; Liu W; Zhang X; Si C; Liu P; Zhang K
    Adv Mater; 2021 Dec; 33(48):e2101368. PubMed ID: 34561914
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Biomass-Derived Carbons for Sodium-Ion Batteries and Sodium-Ion Capacitors.
    Zhu J; Roscow J; Chandrasekaran S; Deng L; Zhang P; He T; Wang K; Huang L
    ChemSusChem; 2020 Mar; 13(6):1275-1295. PubMed ID: 32061148
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Porous Carbon-Based Supercapacitors Directly Derived from Metal-Organic Frameworks.
    Kim HC; Huh S
    Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32972017
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Surface design and engineering of hierarchical hybrid nanostructures for asymmetric supercapacitors with improved electrochemical performance.
    Achilleos DS; Hatton TA
    J Colloid Interface Sci; 2015 Jun; 447():282-301. PubMed ID: 25711524
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Alternative lithium-ion battery using biomass-derived carbons as environmentally sustainable anode.
    Hernández-Rentero C; Marangon V; Olivares-Marín M; Gómez-Serrano V; Caballero Á; Morales J; Hassoun J
    J Colloid Interface Sci; 2020 Aug; 573():396-408. PubMed ID: 32304949
    [TBL] [Abstract][Full Text] [Related]  

  • 55. High-performance nanostructured bio-based carbon electrodes for energy storage applications.
    Al Rai A; Yanilmaz M
    Cellulose (Lond); 2021; 28(9):5169-5218. PubMed ID: 33897123
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Preparation and Electrochemical Performance of Bio-Oil-Derived Hydrochar as a Supercapacitor Electrode Material.
    Wei J; Sun J; Xu D; Shi L; Wang M; Li B; Song X; Zhang S; Zhang H
    Int J Environ Res Public Health; 2023 Jan; 20(2):. PubMed ID: 36674109
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Opportunities of Flexible and Portable Electrochemical Devices for Energy Storage: Expanding the Spotlight onto Semi-solid/Solid Electrolytes.
    Fan X; Zhong C; Liu J; Ding J; Deng Y; Han X; Zhang L; Hu W; Wilkinson DP; Zhang J
    Chem Rev; 2022 Dec; 122(23):17155-17239. PubMed ID: 36239919
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Construction Building Materials as a Potential for Structural Supercapacitor Applications.
    Basha SI; Shah SS; Ahmad S; Maslehuddin M; Al-Zahrani MM; Aziz MA
    Chem Rec; 2022 Nov; 22(11):e202200134. PubMed ID: 35832015
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The effect of the pyrolysis temperature and biomass type on the biocarbons characteristics.
    Iurchenkova A; Kobets A; Ahaliabadeh Z; Kosir J; Laakso E; Virtanen T; Siipola V; Lahtinen J; Kallio T
    ChemSusChem; 2024 Apr; 17(8):e202301005. PubMed ID: 38126627
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Recent Advances in Molybdenum Disulfide and Its Nanocomposites for Energy Applications: Challenges and Development.
    Ismail KBM; Arun Kumar M; Mahalingam S; Kim J; Atchudan R
    Materials (Basel); 2023 Jun; 16(12):. PubMed ID: 37374654
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.