These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 32708406)

  • 1. Horticultural Plant Residues as New Source for Lignocellulose Nanofibers Isolation: Application on the Recycling Paperboard Process.
    Bascón-Villegas I; Espinosa E; Sánchez R; Tarrés Q; Pérez-Rodríguez F; Rodríguez A
    Molecules; 2020 Jul; 25(14):. PubMed ID: 32708406
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparative study of the suitability of different cereal straws for lignocellulose nanofibers isolation.
    Espinosa E; Sánchez R; Otero R; Domínguez-Robles J; Rodríguez A
    Int J Biol Macromol; 2017 Oct; 103():990-999. PubMed ID: 28554790
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation and characterization of lignocellulose nanofibers from different wheat straw pulps.
    Sánchez R; Espinosa E; Domínguez-Robles J; Loaiza JM; Rodríguez A
    Int J Biol Macromol; 2016 Nov; 92():1025-1033. PubMed ID: 27514440
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of initial chemical composition and characteristics of pulps on the production and properties of lignocellulosic nanofibers.
    Ehman NV; Lourenço AF; McDonagh BH; Vallejos ME; Felissia FE; Ferreira PJT; Chinga-Carrasco G; Area MC
    Int J Biol Macromol; 2020 Jan; 143():453-461. PubMed ID: 31778692
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of the fibrillation method on lignocellulosic nanofibers production from eucalyptus sawdust: A comparative study between high-pressure homogenization and grinding.
    Tarrés Q; Oliver-Ortega H; Boufi S; Àngels Pèlach M; Delgado-Aguilar M; Mutjé P
    Int J Biol Macromol; 2020 Feb; 145():1199-1207. PubMed ID: 31726148
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lignocellulosic nanofibers from triticale straw: The influence of hemicelluloses and lignin in their production and properties.
    Tarrés Q; Ehman NV; Vallejos ME; Area MC; Delgado-Aguilar M; Mutjé P
    Carbohydr Polym; 2017 May; 163():20-27. PubMed ID: 28267498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cassava starch films reinforced with lignocellulose nanofibers from cassava bagasse.
    Travalini AP; Lamsal B; Magalhães WLE; Demiate IM
    Int J Biol Macromol; 2019 Oct; 139():1151-1161. PubMed ID: 31419552
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of residual lignin and heteropolysaccharides on the bioconversion of softwood lignocellulose nanofibrils obtained by SO2-ethanol-water fractionation.
    Morales LO; Iakovlev M; Martin-Sampedro R; Rahikainen JL; Laine J; van Heiningen A; Rojas OJ
    Bioresour Technol; 2014 Jun; 161():55-62. PubMed ID: 24686371
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lignocellulose Nanofibre Obtained from Agricultural Wastes of Tomato, Pepper and Eggplants Improves the Performance of Films of Polyvinyl Alcohol (PVA) for Food Packaging.
    Bascón-Villegas I; Sánchez-Gutiérrez M; Pérez-Rodríguez F; Espinosa E; Rodríguez A
    Foods; 2021 Dec; 10(12):. PubMed ID: 34945594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Are Cellulose Nanofibers a Solution for a More Circular Economy of Paper Products?
    Delgado-Aguilar M; Tarrés Q; Pèlach MÀ; Mutjé P; Fullana-I-Palmer P
    Environ Sci Technol; 2015 Oct; 49(20):12206-13. PubMed ID: 26425934
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapidly growing vegetables as new sources for lignocellulose nanofibre isolation: Physicochemical, thermal and rheological characterisation.
    Espinosa E; Sánchez R; González Z; Domínguez-Robles J; Ferrari B; Rodríguez A
    Carbohydr Polym; 2017 Nov; 175():27-37. PubMed ID: 28917866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanocellulose from Spanish Harvesting Residues to Improve the Sustainability and Functionality of Linerboard Recycling Processes.
    De Haro-Niza J; Rincón E; Gonzalez Z; Espinosa E; Rodríguez A
    Nanomaterials (Basel); 2022 Dec; 12(24):. PubMed ID: 36558303
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lignin-Containing Cellulose Nanofibrils from TEMPO-Mediated Oxidation of Date Palm Waste: Preparation, Characterization, and Reinforcing Potential.
    Najahi A; Tarrés Q; Mutjé P; Delgado-Aguilar M; Putaux JL; Boufi S
    Nanomaterials (Basel); 2022 Dec; 13(1):. PubMed ID: 36616036
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lignocellulosic fibres from enzyme-treated tomato plants: Characterisation and application in paperboard manufacturing.
    Covino C; Sorrentino A; Di Pierro P; Roscigno G; Vece AP; Masi P
    Int J Biol Macromol; 2020 Oct; 161():787-796. PubMed ID: 32535208
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In Situ Production and Application of Cellulose Nanofibers to Improve Recycled Paper Production.
    Balea A; Sanchez-Salvador JL; Monte MC; Merayo N; Negro C; Blanco A
    Molecules; 2019 May; 24(9):. PubMed ID: 31075959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous green synthesis and in-situ impregnation of silver nanoparticles into organic nanofibers by Lythrum salicaria extract: Morphological, thermal, antimicrobial and release properties.
    Mohammadalinejhad S; Almasi H; Esmaiili M
    Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110115. PubMed ID: 31546384
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lignocellulosic micro/nanofibers from wood sawdust applied to recycled fibers for the production of paper bags.
    Tarrés Q; Pellicer N; Balea A; Merayo N; Negro C; Blanco A; Delgado-Aguilar M; Mutjé P
    Int J Biol Macromol; 2017 Dec; 105(Pt 1):664-670. PubMed ID: 28735007
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Green production of lignocellulose nanofibrils by FeCl
    Lu H; Zhang L; Yan M; Ye J; Wang K; Jiang J
    Int J Biol Macromol; 2023 Jan; 224():181-187. PubMed ID: 36270400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Eco-friendly laccase and cellulase enzymes pretreatment for optimized production of high content lignin-cellulose nanofibrils.
    Dias MC; Belgacem MN; de Resende JV; Martins MA; Damásio RAP; Tonoli GHD; Ferreira SR
    Int J Biol Macromol; 2022 Jun; 209(Pt A):413-425. PubMed ID: 35413312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of gamma irradiation on physico-mechanical and structural properties of active Farsi gum-CMC films containing Ziziphora clinopodioides essential oil and lignocellulose nanofibers for meat packaging.
    Bahari R; Shahbazi Y; Shavisi N
    J Food Sci; 2020 Oct; 85(10):3498-3508. PubMed ID: 32940370
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.