These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 32708442)

  • 1. Can Ensemble Deep Learning Identify People by Their Gait Using Data Collected from Multi-Modal Sensors in Their Insole?
    Moon J; Minaya NH; Le NA; Park HC; Choi SI
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32708442
    [TBL] [Abstract][Full Text] [Related]  

  • 2. User Identification from Gait Analysis Using Multi-Modal Sensors in Smart Insole.
    Choi SI; Moon J; Park HC; Choi ST
    Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31480467
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Systematic Approach to the Design and Characterization of A Smart Insole for Detecting Vertical Ground Reaction Force (vGRF) in Gait Analysis.
    Tahir AM; Chowdhury MEH; Khandakar A; Al-Hamouz S; Abdalla M; Awadallah S; Reaz MBI; Al-Emadi N
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32053914
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of Gait Abnormalities for Fall Risk Assessment Using Wrist-Worn Inertial Sensors and Deep Learning.
    Kiprijanovska I; Gjoreski H; Gams M
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32961750
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PPG-based Biometric Identification: Discovering and Identifying a New User.
    Ye Y; Xiong G; Wan Z; Pan T; Huang Z
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():1145-1148. PubMed ID: 34891490
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Classification of Minor Gait Alterations Using Wearable Sensors and Deep Learning.
    Turner A; Hayes S
    IEEE Trans Biomed Eng; 2019 Nov; 66(11):3136-3145. PubMed ID: 30794506
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cross-Subject and Cross-Modal Transfer for Generalized Abnormal Gait Pattern Recognition.
    Gu X; Guo Y; Deligianni F; Lo B; Yang GZ
    IEEE Trans Neural Netw Learn Syst; 2021 Feb; 32(2):546-560. PubMed ID: 32726285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep Neural Network-Based Gait Classification Using Wearable Inertial Sensor Data.
    Jung D; Nguyen MD; Han J; Park M; Lee K; Yoo S; Kim J; Mun KR
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3624-3628. PubMed ID: 31946661
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gait-Based Implicit Authentication Using Edge Computing and Deep Learning for Mobile Devices.
    Zeng X; Zhang X; Yang S; Shi Z; Chi C
    Sensors (Basel); 2021 Jul; 21(13):. PubMed ID: 34283149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep learning approach to estimate foot pressure distribution in walking with application for a cost-effective insole system.
    Mun F; Choi A
    J Neuroeng Rehabil; 2022 Jan; 19(1):4. PubMed ID: 35034658
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep Learning for Fall Risk Assessment With Inertial Sensors: Utilizing Domain Knowledge in Spatio-Temporal Gait Parameters.
    Tunca C; Salur G; Ersoy C
    IEEE J Biomed Health Inform; 2020 Jul; 24(7):1994-2005. PubMed ID: 31831454
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Contribution of Machine Learning in the Validation of Commercial Wearable Sensors for Gait Monitoring in Patients: A Systematic Review.
    Jourdan T; Debs N; Frindel C
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300546
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gait Pattern Analysis: Integration of a Highly Sensitive Flexible Pressure Sensor on a Wireless Instrumented Insole.
    Das PS; Skaf D; Rose L; Motaghedi F; Carmichael TB; Rondeau-Gagné S; Ahamed MJ
    Sensors (Basel); 2024 May; 24(9):. PubMed ID: 38733050
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-Functional Soft Strain Sensors for Wearable Physiological Monitoring.
    Hughes J; Iida F
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30413011
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flexible Gel-Free Multi-Modal Wireless Sensors With Edge Deep Learning for Detecting and Alerting Freezing of Gait Symptom.
    Hou Y; Ji J; Zhu Y; Dell T; Liu X
    IEEE Trans Biomed Circuits Syst; 2023 Oct; 17(5):1010-1021. PubMed ID: 37256796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the Feasibility of Low-Cost Wearable Sensors for Multi-Modal Biometric Verification.
    Blasco J; Peris-Lopez P
    Sensors (Basel); 2018 Aug; 18(9):. PubMed ID: 30149511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine Learning Strategies for Low-Cost Insole-Based Prediction of Center of Gravity during Gait in Healthy Males.
    Moon J; Lee D; Jung H; Choi A; Mun JH
    Sensors (Basel); 2022 May; 22(9):. PubMed ID: 35591188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Explainable Deep-Learning-Based Gait Analysis of Hip-Knee Cyclogram for the Prediction of Adolescent Idiopathic Scoliosis Progression.
    Kim YG; Kim S; Park JH; Yang S; Jang M; Yun YJ; Cho JS; You S; Jang SH
    Sensors (Basel); 2024 Jul; 24(14):. PubMed ID: 39065902
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep Learning Techniques for Improving Digital Gait Segmentation.
    Gadaleta M; Cisotto G; Rossi M; Ur Rehman RZ; Rochester L; Del Din S
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():1834-1837. PubMed ID: 31946254
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A New Post-Processing Proposal for Improving Biometric Gait Recognition Using Wearable Devices.
    Salvador-Ortega I; Vivaracho-Pascual C; Simon-Hurtado A
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772096
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.