These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 32708680)

  • 1. Exploiting Tissue Dielectric Properties to Shape Microwave Thermal Ablation Zones.
    Bottiglieri A; Ruvio G; O'Halloran M; Farina L
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32708680
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in the dielectric properties of ex vivo bovine liver during microwave thermal ablation at 2.45 GHz.
    Lopresto V; Pinto R; Lovisolo GA; Cavagnaro M
    Phys Med Biol; 2012 Apr; 57(8):2309-27. PubMed ID: 22460062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microwave thermal ablation: Effects of tissue properties variations on predictive models for treatment planning.
    Lopresto V; Pinto R; Farina L; Cavagnaro M
    Med Eng Phys; 2017 Aug; 46():63-70. PubMed ID: 28647287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of minimally invasive directional antennas for microwave tissue ablation.
    Sebek J; Curto S; Bortel R; Prakash P
    Int J Hyperthermia; 2017 Feb; 33(1):51-60. PubMed ID: 27380439
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of ablation zones among different tissues using 2450-MHz cooled-shaft microwave antenna: results in ex vivo porcine models.
    Zhou W; Liang M; Pan H; Liu X; Jiang Y; Wang Y; Ling L; Ding Q; Wang S
    PLoS One; 2013; 8(8):e71873. PubMed ID: 23951262
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microwave ablation at 10.0 GHz achieves comparable ablation zones to 1.9 GHz in ex vivo bovine liver.
    Luyen H; Gao F; Hagness SC; Behdad N
    IEEE Trans Biomed Eng; 2014 Jun; 61(6):1702-10. PubMed ID: 24845280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Directional Interstitial Antenna for Microwave Tissue Ablation: Theoretical and Experimental Investigation.
    McWilliams BT; Schnell EE; Curto S; Fahrbach TM; Prakash P
    IEEE Trans Biomed Eng; 2015 Sep; 62(9):2144-50. PubMed ID: 25794385
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational modeling of 915 MHz microwave ablation: Comparative assessment of temperature-dependent tissue dielectric models.
    Deshazer G; Hagmann M; Merck D; Sebek J; Moore KB; Prakash P
    Med Phys; 2017 Sep; 44(9):4859-4868. PubMed ID: 28543540
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The impact of frequency on the performance of microwave ablation.
    Sawicki JF; Shea JD; Behdad N; Hagness SC
    Int J Hyperthermia; 2017 Feb; 33(1):61-68. PubMed ID: 27443394
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of Microwave Ablation Process in Sweet Potatoes as Substitute Liver.
    Khan MS; Hawlitzki M; Taheri SM; Rose G; Schweizer B; Brensing A
    Sensors (Basel); 2021 Jun; 21(11):. PubMed ID: 34200011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of the target tissue size on the shape of ex vivo microwave ablation zones.
    Cavagnaro M; Amabile C; Cassarino S; Tosoratti N; Pinto R; Lopresto V
    Int J Hyperthermia; 2015 Feb; 31(1):48-57. PubMed ID: 25677838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Superparamagnetic iron oxide nanoparticle enhanced percutaneous microwave ablation: Ex-vivo characterization using magnetic resonance thermometry.
    Bhagavatula SK; Panikkanvalappil SR; Tokuda J; Levesque V; Tatarova Z; Liu G; Markert JE; Jonas O
    Med Phys; 2024 May; 51(5):3195-3206. PubMed ID: 38513254
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expanded modeling of temperature-dependent dielectric properties for microwave thermal ablation.
    Ji Z; Brace CL
    Phys Med Biol; 2011 Aug; 56(16):5249-64. PubMed ID: 21791728
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical models to evaluate the temperature increase induced by ex vivo microwave thermal ablation.
    Cavagnaro M; Pinto R; Lopresto V
    Phys Med Biol; 2015 Apr; 60(8):3287-311. PubMed ID: 25826652
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental and numerical study of microwave ablation on ex-vivo porcine lung.
    Gao X; Tian Z; Cheng Y; Geng B; Chen S; Nan Q
    Electromagn Biol Med; 2019; 38(4):249-261. PubMed ID: 31554439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Management of adreno-cortical adenomas using microwave ablation: study of the effects of the fat tissue.
    Bottiglieri A; O'Halloran M; Ruvio G; Farina L
    Int J Hyperthermia; 2022; 39(1):1179-1194. PubMed ID: 36096484
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual-slot antennas for microwave tissue heating: parametric design analysis and experimental validation.
    Brace CL
    Med Phys; 2011 Jul; 38(7):4232-40. PubMed ID: 21859025
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Histology-validated electromagnetic characterization of ex-vivo ovine lung tissue for microwave-based medical applications.
    Vidjak K; Farina L; Challapalli RS; Quinn AM; O'Halloran M; Lowery A; Ruvio G; Cavagnaro M
    Sci Rep; 2024 Mar; 14(1):5940. PubMed ID: 38467672
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microwave ablation of ex vivo bovine tissues using a dual slot antenna with a floating metallic sleeve.
    Ibitoye AZ; Nwoye EO; Aweda AM; Oremosu AA; Anunobi CC; Akanmu NO
    Int J Hyperthermia; 2016 Dec; 32(8):923-930. PubMed ID: 27431435
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MWA Performed at 5.8 GHz through 'Side Firing' Approach: An Exploratory Study.
    Bottiglieri A; Brace C; O'Halloran M; Farina L
    Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36502019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.