These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
241 related articles for article (PubMed ID: 32708715)
1. Biomechanical Model-Based Development of an Active Occupational Upper-Limb Exoskeleton to Support Healthcare Workers in the Surgery Waiting Room. Tröster M; Wagner D; Müller-Graf F; Maufroy C; Schneider U; Bauernhansl T Int J Environ Res Public Health; 2020 Jul; 17(14):. PubMed ID: 32708715 [TBL] [Abstract][Full Text] [Related]
2. Model-Based Comparison of Passive and Active Assistance Designs in an Occupational Upper Limb Exoskeleton for Overhead Lifting. Zhou X; Zheng L IISE Trans Occup Ergon Hum Factors; 2021; 9(3-4):167-185. PubMed ID: 34254566 [TBL] [Abstract][Full Text] [Related]
3. Model-Based Biomechanical Exoskeleton Concept Optimization for a Representative Lifting Task in Logistics. Schiebl J; Tröster M; Idoudi W; Gneiting E; Spies L; Maufroy C; Schneider U; Bauernhansl T Int J Environ Res Public Health; 2022 Nov; 19(23):. PubMed ID: 36497613 [TBL] [Abstract][Full Text] [Related]
4. A Passive Back-Support Exoskeleton for Manual Materials Handling: Reduction of Low Back Loading and Metabolic Effort during Repetitive Lifting. Schmalz T; Colienne A; Bywater E; Fritzsche L; Gärtner C; Bellmann M; Reimer S; Ernst M IISE Trans Occup Ergon Hum Factors; 2022; 10(1):7-20. PubMed ID: 34763618 [TBL] [Abstract][Full Text] [Related]
5. In-Field Training of a Passive Back Exoskeleton Changes the Biomechanics of Logistic Workers. Schrøder Jakobsen L; Samani A; Desbrosses K; de Zee M; Madeleine P IISE Trans Occup Ergon Hum Factors; 2024; 12(3):149-161. PubMed ID: 38869954 [TBL] [Abstract][Full Text] [Related]
6. Ergonomics assessment of passive upper-limb exoskeletons in an automotive assembly plant. Iranzo S; Piedrabuena A; Iordanov D; Martinez-Iranzo U; Belda-Lois JM Appl Ergon; 2020 Sep; 87():103120. PubMed ID: 32310110 [TBL] [Abstract][Full Text] [Related]
7. Biomechanical changes, acceptance, and usability of a passive shoulder exoskeleton in manual material handling. A field study. Schrøder Jakobsen L; de Zee M; Samani A; Desbrosses K; Madeleine P Appl Ergon; 2023 Nov; 113():104104. PubMed ID: 37531933 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of antigravitational support levels provided by a passive upper-limb occupational exoskeleton in repetitive arm movements. Ramella G; Grazi L; Giovacchini F; Trigili E; Vitiello N; Crea S Appl Ergon; 2024 May; 117():104226. PubMed ID: 38219374 [TBL] [Abstract][Full Text] [Related]
9. Modulation of shoulder muscle and joint function using a powered upper-limb exoskeleton. Wu W; Fong J; Crocher V; Lee PVS; Oetomo D; Tan Y; Ackland DC J Biomech; 2018 Apr; 72():7-16. PubMed ID: 29506759 [TBL] [Abstract][Full Text] [Related]
10. Biomechanical and Metabolic Effectiveness of an Industrial Exoskeleton for Overhead Work. Schmalz T; Schändlinger J; Schuler M; Bornmann J; Schirrmeister B; Kannenberg A; Ernst M Int J Environ Res Public Health; 2019 Nov; 16(23):. PubMed ID: 31795365 [TBL] [Abstract][Full Text] [Related]
11. Scientific basis of the OCRA method for risk assessment of biomechanical overload of upper limb, as preferred method in ISO standards on biomechanical risk factors. Colombini D; Occhipinti E Scand J Work Environ Health; 2018 Jul; 44(4):436-438. PubMed ID: 29961081 [TBL] [Abstract][Full Text] [Related]
12. Design and Experimental Evaluation of a Semi-Passive Upper-Limb Exoskeleton for Workers With Motorized Tuning of Assistance. Grazi L; Trigili E; Proface G; Giovacchini F; Crea S; Vitiello N IEEE Trans Neural Syst Rehabil Eng; 2020 Oct; 28(10):2276-2285. PubMed ID: 32755865 [TBL] [Abstract][Full Text] [Related]
13. Effects of an exoskeleton on muscle activity in tasks requiring arm elevation: Part I - Experiments in a controlled laboratory setting. Mänttäri S; Rauttola AP; Halonen J; Karkulehto J; Säynäjäkangas P; Oksa J Work; 2024; 77(4):1179-1188. PubMed ID: 37980590 [TBL] [Abstract][Full Text] [Related]
14. The Exo4Work shoulder exoskeleton effectively reduces muscle and joint loading during simulated occupational tasks above shoulder height. van der Have A; Rossini M; Rodriguez-Guerrero C; Van Rossom S; Jonkers I Appl Ergon; 2022 Sep; 103():103800. PubMed ID: 35598416 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of a Passive Upper Limb Exoskeleton in Healthcare Workers during a Surgical Instrument Cleaning Task. Arnoux B; Farr A; Boccara V; Vignais N Int J Environ Res Public Health; 2023 Feb; 20(4):. PubMed ID: 36833846 [TBL] [Abstract][Full Text] [Related]
16. Biomechanical Analysis of Stoop and Free-Style Squat Lifting and Lowering with a Generic Back-Support Exoskeleton Model. Tröster M; Budde S; Maufroy C; Andersen MS; Rasmussen J; Schneider U; Bauernhansl T Int J Environ Res Public Health; 2022 Jul; 19(15):. PubMed ID: 35897411 [TBL] [Abstract][Full Text] [Related]
17. Equivalent Weight: Connecting Exoskeleton Effectiveness with Ergonomic Risk during Manual Material Handling. Di Natali C; Chini G; Toxiri S; Monica L; Anastasi S; Draicchio F; Caldwell DG; Ortiz J Int J Environ Res Public Health; 2021 Mar; 18(5):. PubMed ID: 33799947 [TBL] [Abstract][Full Text] [Related]
19. Effects of exoskeleton design and precision requirements on physical demands and quality in a simulated overhead drilling task. Alabdulkarim S; Kim S; Nussbaum MA Appl Ergon; 2019 Oct; 80():136-145. PubMed ID: 31280797 [TBL] [Abstract][Full Text] [Related]
20. [Design of wearable auxiliary device based on upper limb lifting workers and ergonomics simulation analysis]. Sun LH; Wu J; Wu J; Zhang ZK; Li WQ; Wang MY Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi; 2022 Jun; 40(6):454-458. PubMed ID: 35785903 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]