BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 32708757)

  • 1. Study on Functionality and Surface Modification of a Stair-Step Liquid-Triggered Valve for On-Chip Flow Control.
    Chen X; Chen S; Zhang Y; Yang H
    Micromachines (Basel); 2020 Jul; 11(7):. PubMed ID: 32708757
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Autonomous microfluidic capillaric circuits replicated from 3D-printed molds.
    Olanrewaju AO; Robillard A; Dagher M; Juncker D
    Lab Chip; 2016 Sep; 16(19):3804-3814. PubMed ID: 27722504
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New flow control systems in capillarics: off valves.
    Menges J; Meffan C; Dolamore F; Fee C; Dobson R; Nock V
    Lab Chip; 2021 Jan; 21(1):205-214. PubMed ID: 33295906
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Capillary microfluidics in microchannels: from microfluidic networks to capillaric circuits.
    Olanrewaju A; Beaugrand M; Yafia M; Juncker D
    Lab Chip; 2018 Aug; 18(16):2323-2347. PubMed ID: 30010168
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Capillaric field effect transistors.
    Meffan C; Menges J; Dolamore F; Mak D; Fee C; Dobson RCJ; Nock V
    Microsyst Nanoeng; 2022; 8():33. PubMed ID: 35371537
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diffusion-free valve for preprogrammed immunoassay with capillary microfluidics.
    Azizian P; Casals-Terré J; Ricart J; Cabot JM
    Microsyst Nanoeng; 2023; 9():91. PubMed ID: 37469685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Capillary Flow-Driven and Magnetically Actuated Multi-Use Wax Valves for Controlled Sealing and Releasing of Fluids on Centrifugal Microfluidic Platforms.
    Peshin S; George D; Shiri R; Kulinsky L; Madou M
    Micromachines (Basel); 2022 Feb; 13(2):. PubMed ID: 35208427
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A 3D Capillary-Driven Multi-Micropore Membrane-Based Trigger Valve for Multi-Step Biochemical Reaction.
    Zhang Y; Li Y; Luan X; Li X; Jiang J; Fan Y; Li M; Huang C; Zhang L; Zhao Y
    Biosensors (Basel); 2022 Dec; 13(1):. PubMed ID: 36671861
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional surface microfluidics enabled by spatiotemporal control of elastic fluidic interface.
    Hong L; Pan T
    Lab Chip; 2010 Dec; 10(23):3271-6. PubMed ID: 20931123
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrical Textile Valves for Paper Microfluidics.
    Ainla A; Hamedi MM; Güder F; Whitesides GM
    Adv Mater; 2017 Oct; 29(38):. PubMed ID: 28809064
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flow control in a laminate capillary-driven microfluidic device.
    Jang I; Kang H; Song S; Dandy DS; Geiss BJ; Henry CS
    Analyst; 2021 Mar; 146(6):1932-1939. PubMed ID: 33492316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A versatile valving toolkit for automating fluidic operations in paper microfluidic devices.
    Toley BJ; Wang JA; Gupta M; Buser JR; Lafleur LK; Lutz BR; Fu E; Yager P
    Lab Chip; 2015 Mar; 15(6):1432-44. PubMed ID: 25606810
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modular design of paper based switches for autonomous lab-on paper micro devices.
    Patil Y; Dotseth K; Shapiro T; Pushparajan D; Binderup S; Horn JR; Korampally V
    Biomed Microdevices; 2020 Nov; 23(1):1. PubMed ID: 33247780
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Effective Capillary Valve Based on Micro-hole Array for Microfluidic Systems.
    Xie Y; You H; Gao Z; Huang Z; Yang M
    Anal Sci; 2018 Nov; 34(11):1323-1327. PubMed ID: 30101831
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Innovative Hydrophobic Valve Allows Complex Liquid Manipulations in a Self-Powered Channel-Based Microfluidic Device.
    Dal Dosso F; Tripodi L; Spasic D; Kokalj T; Lammertyn J
    ACS Sens; 2019 Mar; 4(3):694-703. PubMed ID: 30807106
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A microfluidic circuit consisting of individualized components with a 3D slope valve for automation of sequential liquid control.
    Kang DH; Kim NK; Park SW; Lee W; Kang HW
    Lab Chip; 2020 Nov; 20(23):4433-4441. PubMed ID: 32832953
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Autonomous microfluidics with stimuli-responsive hydrogels.
    Dong L; Jiang H
    Soft Matter; 2007 Sep; 3(10):1223-1230. PubMed ID: 32900089
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface Modification of Glass/PDMS Microfluidic Valve Assemblies Enhances Valve Electrical Resistance.
    Wang X; Agasid MT; Baker CA; Aspinwall CA
    ACS Appl Mater Interfaces; 2019 Sep; 11(37):34463-34470. PubMed ID: 31496217
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Capillarics: pre-programmed, self-powered microfluidic circuits built from capillary elements.
    Safavieh R; Juncker D
    Lab Chip; 2013 Nov; 13(21):4180-9. PubMed ID: 23978958
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electro-actuated valves and self-vented channels enable programmable flow control and monitoring in capillary-driven microfluidics.
    Arango Y; Temiz Y; Gökçe O; Delamarche E
    Sci Adv; 2020 Apr; 6(16):eaay8305. PubMed ID: 32494605
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.