These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 32708757)

  • 1. Study on Functionality and Surface Modification of a Stair-Step Liquid-Triggered Valve for On-Chip Flow Control.
    Chen X; Chen S; Zhang Y; Yang H
    Micromachines (Basel); 2020 Jul; 11(7):. PubMed ID: 32708757
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Autonomous microfluidic capillaric circuits replicated from 3D-printed molds.
    Olanrewaju AO; Robillard A; Dagher M; Juncker D
    Lab Chip; 2016 Sep; 16(19):3804-3814. PubMed ID: 27722504
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New flow control systems in capillarics: off valves.
    Menges J; Meffan C; Dolamore F; Fee C; Dobson R; Nock V
    Lab Chip; 2021 Jan; 21(1):205-214. PubMed ID: 33295906
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Capillary microfluidics in microchannels: from microfluidic networks to capillaric circuits.
    Olanrewaju A; Beaugrand M; Yafia M; Juncker D
    Lab Chip; 2018 Aug; 18(16):2323-2347. PubMed ID: 30010168
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Capillaric field effect transistors.
    Meffan C; Menges J; Dolamore F; Mak D; Fee C; Dobson RCJ; Nock V
    Microsyst Nanoeng; 2022; 8():33. PubMed ID: 35371537
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diffusion-free valve for preprogrammed immunoassay with capillary microfluidics.
    Azizian P; Casals-Terré J; Ricart J; Cabot JM
    Microsyst Nanoeng; 2023; 9():91. PubMed ID: 37469685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Capillary Flow-Driven and Magnetically Actuated Multi-Use Wax Valves for Controlled Sealing and Releasing of Fluids on Centrifugal Microfluidic Platforms.
    Peshin S; George D; Shiri R; Kulinsky L; Madou M
    Micromachines (Basel); 2022 Feb; 13(2):. PubMed ID: 35208427
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A 3D Capillary-Driven Multi-Micropore Membrane-Based Trigger Valve for Multi-Step Biochemical Reaction.
    Zhang Y; Li Y; Luan X; Li X; Jiang J; Fan Y; Li M; Huang C; Zhang L; Zhao Y
    Biosensors (Basel); 2022 Dec; 13(1):. PubMed ID: 36671861
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional surface microfluidics enabled by spatiotemporal control of elastic fluidic interface.
    Hong L; Pan T
    Lab Chip; 2010 Dec; 10(23):3271-6. PubMed ID: 20931123
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrical Textile Valves for Paper Microfluidics.
    Ainla A; Hamedi MM; Güder F; Whitesides GM
    Adv Mater; 2017 Oct; 29(38):. PubMed ID: 28809064
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flow control in a laminate capillary-driven microfluidic device.
    Jang I; Kang H; Song S; Dandy DS; Geiss BJ; Henry CS
    Analyst; 2021 Mar; 146(6):1932-1939. PubMed ID: 33492316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A versatile valving toolkit for automating fluidic operations in paper microfluidic devices.
    Toley BJ; Wang JA; Gupta M; Buser JR; Lafleur LK; Lutz BR; Fu E; Yager P
    Lab Chip; 2015 Mar; 15(6):1432-44. PubMed ID: 25606810
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Effective Capillary Valve Based on Micro-hole Array for Microfluidic Systems.
    Xie Y; You H; Gao Z; Huang Z; Yang M
    Anal Sci; 2018 Nov; 34(11):1323-1327. PubMed ID: 30101831
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Innovative Hydrophobic Valve Allows Complex Liquid Manipulations in a Self-Powered Channel-Based Microfluidic Device.
    Dal Dosso F; Tripodi L; Spasic D; Kokalj T; Lammertyn J
    ACS Sens; 2019 Mar; 4(3):694-703. PubMed ID: 30807106
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A microfluidic circuit consisting of individualized components with a 3D slope valve for automation of sequential liquid control.
    Kang DH; Kim NK; Park SW; Lee W; Kang HW
    Lab Chip; 2020 Nov; 20(23):4433-4441. PubMed ID: 32832953
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Autonomous microfluidics with stimuli-responsive hydrogels.
    Dong L; Jiang H
    Soft Matter; 2007 Sep; 3(10):1223-1230. PubMed ID: 32900089
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface Modification of Glass/PDMS Microfluidic Valve Assemblies Enhances Valve Electrical Resistance.
    Wang X; Agasid MT; Baker CA; Aspinwall CA
    ACS Appl Mater Interfaces; 2019 Sep; 11(37):34463-34470. PubMed ID: 31496217
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Capillarics: pre-programmed, self-powered microfluidic circuits built from capillary elements.
    Safavieh R; Juncker D
    Lab Chip; 2013 Nov; 13(21):4180-9. PubMed ID: 23978958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The dynamics of capillary flow in an open-channel system featuring trigger valves.
    Tokihiro JC; Robertson IH; Gregucci D; Shin A; Michelini E; Nicholson TM; Olanrewaju A; Theberge AB; Berthier J; Berthier E
    bioRxiv; 2024 Nov; ():. PubMed ID: 39345588
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electro-actuated valves and self-vented channels enable programmable flow control and monitoring in capillary-driven microfluidics.
    Arango Y; Temiz Y; Gökçe O; Delamarche E
    Sci Adv; 2020 Apr; 6(16):eaay8305. PubMed ID: 32494605
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.