These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 32708910)

  • 41. Identification of epigenetic memory candidates associated with gestational age at birth through analysis of methylome and transcriptional data.
    Kashima K; Kawai T; Nishimura R; Shiwa Y; Urayama KY; Kamura H; Takeda K; Aoto S; Ito A; Matsubara K; Nagamatsu T; Fujii T; Omori I; Shimizu M; Hyodo H; Kugu K; Matsumoto K; Shimizu A; Oka A; Mizuguchi M; Nakabayashi K; Hata K; Takahashi N
    Sci Rep; 2021 Feb; 11(1):3381. PubMed ID: 33564054
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Epigenome-wide analysis identifies genes and pathways linked to acoustic cry variation in preterm infants.
    Aghagoli G; Sheinkopf SJ; Everson TM; Marsit CJ; Lee H; Burt AA; Carter BS; Helderman JB; Hofheimer JA; McGowan EC; Neal CR; O'Shea TM; Pastyrnak SL; Smith LM; Soliman A; Dansereau LM; DellaGrotta SA; Padbury JF; Lester BM
    Pediatr Res; 2021 May; 89(7):1848-1854. PubMed ID: 32967004
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Stress During Pregnancy and Epigenetic Modifications to Offspring DNA: A Systematic Review of Associations and Implications for Preterm Birth.
    Nowak AL; Anderson CM; Mackos AR; Neiman E; Gillespie SL
    J Perinat Neonatal Nurs; 2020; 34(2):134-145. PubMed ID: 32332443
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A Systematic Review of DNA Methylation and Preterm Birth in African American Women.
    Barcelona de Mendoza V; Wright ML; Agaba C; Prescott L; Desir A; Crusto CA; Sun YV; Taylor JY
    Biol Res Nurs; 2017 May; 19(3):308-317. PubMed ID: 27646016
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Prenatal risk factors and neonatal DNA methylation in very preterm infants.
    Camerota M; Graw S; Everson TM; McGowan EC; Hofheimer JA; O'Shea TM; Carter BS; Helderman JB; Check J; Neal CR; Pastyrnak SL; Smith LM; Dansereau LM; DellaGrotta SA; Marsit CJ; Lester BM
    Clin Epigenetics; 2021 Sep; 13(1):171. PubMed ID: 34507616
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Exposure to polybrominated biphenyl and stochastic epigenetic mutations: application of a novel epigenetic approach to environmental exposure in the Michigan polybrominated biphenyl registry.
    Curtis SW; Cobb DO; Kilaru V; Terrell ML; Marder ME; Barr DB; Marsit CJ; Marcus M; Conneely KN; Smith AK
    Epigenetics; 2019 Oct; 14(10):1003-1018. PubMed ID: 31200609
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Methylation differences reveal heterogeneity in preterm pathophysiology: results from bipartite network analyses.
    Bhavnani SK; Dang B; Kilaru V; Caro M; Visweswaran S; Saade G; Smith AK; Menon R
    J Perinat Med; 2018 Jul; 46(5):509-521. PubMed ID: 28665803
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Differential DNA methylation and PM
    Dai L; Mehta A; Mordukhovich I; Just AC; Shen J; Hou L; Koutrakis P; Sparrow D; Vokonas PS; Baccarelli AA; Schwartz JD
    Epigenetics; 2017 Feb; 12(2):139-148. PubMed ID: 27982729
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Epigenetic changes in preterm birth placenta suggest a role for ADAMTS genes in spontaneous preterm birth.
    Mani S; Ghosh J; Lan Y; Senapati S; Ord T; Sapienza C; Coutifaris C; Mainigi M
    Hum Mol Genet; 2019 Jan; 28(1):84-95. PubMed ID: 30239759
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Early- and late-onset preeclampsia and the DNA methylation of circadian clock and clock-controlled genes in placental and newborn tissues.
    van den Berg CB; Chaves I; Herzog EM; Willemsen SP; van der Horst GTJ; Steegers-Theunissen RPM
    Chronobiol Int; 2017; 34(7):921-932. PubMed ID: 28613964
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Maternal LINE-1 DNA Methylation in Early Spontaneous Preterm Birth.
    Barišić A; Stanković A; Stojković L; Pereza N; Ostojić S; Peterlin A; Peterlin B; Vraneković J
    Biol Res Nurs; 2022 Jan; 24(1):85-93. PubMed ID: 34727781
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Epigenome-wide contributions to individual differences in childhood phenotypes: a GREML approach.
    Neumann A; Pingault JB; Felix JF; Jaddoe VWV; Tiemeier H; Cecil C; Walton E
    Clin Epigenetics; 2022 Apr; 14(1):53. PubMed ID: 35440009
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Epigenome-Wide Association Study of Wellbeing.
    Baselmans BM; van Dongen J; Nivard MG; Lin BD; ; Zilhão NR; Boomsma DI; Bartels M
    Twin Res Hum Genet; 2015 Dec; 18(6):710-9. PubMed ID: 26619905
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Paternal sperm DNA methylation associated with early signs of autism risk in an autism-enriched cohort.
    Feinberg JI; Bakulski KM; Jaffe AE; Tryggvadottir R; Brown SC; Goldman LR; Croen LA; Hertz-Picciotto I; Newschaffer CJ; Fallin MD; Feinberg AP
    Int J Epidemiol; 2015 Aug; 44(4):1199-210. PubMed ID: 25878217
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Comparison of Methyl-capture Sequencing vs. Infinium 450K methylation array for methylome analysis in clinical samples.
    Teh AL; Pan H; Lin X; Lim YI; Patro CP; Cheong CY; Gong M; MacIsaac JL; Kwoh CK; Meaney MJ; Kobor MS; Chong YS; Gluckman PD; Holbrook JD; Karnani N
    Epigenetics; 2016; 11(1):36-48. PubMed ID: 26786415
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Epigenome-wide DNA methylation in externalizing behaviours: A review and combined analysis.
    Meijer M; Franke B; Sandi C; Klein M
    Neurosci Biobehav Rev; 2023 Feb; 145():104997. PubMed ID: 36566803
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Replication and expansion of epigenome-wide association literature in a black South African population.
    Cronjé HT; Elliott HR; Nienaber-Rousseau C; Pieters M
    Clin Epigenetics; 2020 Jan; 12(1):6. PubMed ID: 31910897
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Epigenomic profiling of newborns with isolated orofacial clefts reveals widespread DNA methylation changes and implicates metastable epiallele regions in disease risk.
    Gonseth S; Shaw GM; Roy R; Segal MR; Asrani K; Rine J; Wiemels J; Marini NJ
    Epigenetics; 2019 Feb; 14(2):198-213. PubMed ID: 30870065
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Soluble CD14-associated DNA methylation sites predict mortality among men with HIV infection.
    Titanji BK; Wang Z; Chen J; Hui Q; So-Armah K; Freiberg M; Justice AC; Ke X; Marconi VC; Sun YV
    AIDS; 2022 Sep; 36(11):1563-1571. PubMed ID: 35979830
    [TBL] [Abstract][Full Text] [Related]  

  • 60. DNA methylation patterns in newborns exposed to tobacco in utero.
    Ivorra C; Fraga MF; Bayón GF; Fernández AF; Garcia-Vicent C; Chaves FJ; Redon J; Lurbe E
    J Transl Med; 2015 Jan; 13():25. PubMed ID: 25623364
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.