These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 32709072)

  • 61. Lab-on-Skin: A Review of Flexible and Stretchable Electronics for Wearable Health Monitoring.
    Liu Y; Pharr M; Salvatore GA
    ACS Nano; 2017 Oct; 11(10):9614-9635. PubMed ID: 28901746
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Molecularly selective nanoporous membrane-based wearable organic electrochemical device for noninvasive cortisol sensing.
    Parlak O; Keene ST; Marais A; Curto VF; Salleo A
    Sci Adv; 2018 Jul; 4(7):eaar2904. PubMed ID: 30035216
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Advanced Carbon for Flexible and Wearable Electronics.
    Wang C; Xia K; Wang H; Liang X; Yin Z; Zhang Y
    Adv Mater; 2019 Mar; 31(9):e1801072. PubMed ID: 30300444
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Wearable sensors with possibilities for data exchange: Analyzing status and needs of different actors in mobile health monitoring systems.
    Muzny M; Henriksen A; Giordanengo A; Muzik J; Grøttland A; Blixgård H; Hartvigsen G; Årsand E
    Int J Med Inform; 2020 Jan; 133():104017. PubMed ID: 31778885
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Multifunctional materials for implantable and wearable photonic healthcare devices.
    Lee GH; Moon H; Kim H; Lee GH; Kwon W; Yoo S; Myung D; Yun SH; Bao Z; Hahn SK
    Nat Rev Mater; 2020 Feb; 5(2):149-165. PubMed ID: 32728478
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Flexible, Stretchable Sensors for Wearable Health Monitoring: Sensing Mechanisms, Materials, Fabrication Strategies and Features.
    Liu Y; Wang H; Zhao W; Zhang M; Qin H; Xie Y
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29470408
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Printed Soft Optical Waveguides of PLA Copolymers for Guiding Light into Tissue.
    Feng J; Jiang Q; Rogin P; de Oliveira PW; Del Campo A
    ACS Appl Mater Interfaces; 2020 May; 12(18):20287-20294. PubMed ID: 32285657
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Skin-Integrated Wearable Systems and Implantable Biosensors: A Comprehensive Review.
    Rodrigues D; Barbosa AI; Rebelo R; Kwon IK; Reis RL; Correlo VM
    Biosensors (Basel); 2020 Jul; 10(7):. PubMed ID: 32708103
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Photonic nanowires: from subwavelength waveguides to optical sensors.
    Guo X; Ying Y; Tong L
    Acc Chem Res; 2014 Feb; 47(2):656-66. PubMed ID: 24377258
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Wearable and Implantable Electronics: Moving toward Precision Therapy.
    Song Y; Min J; Gao W
    ACS Nano; 2019 Nov; 13(11):12280-12286. PubMed ID: 31725255
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Integrated Sensing and Warning Multifunctional Devices Based on the Combined Mechanical and Thermal Effect of Porous Graphene.
    Huang Y; Tao LQ; Yu J; Wang Z; Zhu C; Chen X
    ACS Appl Mater Interfaces; 2020 Nov; 12(47):53049-53057. PubMed ID: 33170628
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Fabrication of optical waveguides by imprinting: usage of positive tone resist as a mould for UV-curable polymer.
    Hiltunen J; Hiltunen M; Puustinen J; Lappalainen J; Karioja P
    Opt Express; 2009 Dec; 17(25):22813-22. PubMed ID: 20052207
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Recent Progress of Textile-Based Wearable Electronics: A Comprehensive Review of Materials, Devices, and Applications.
    Heo JS; Eom J; Kim YH; Park SK
    Small; 2018 Jan; 14(3):. PubMed ID: 29205836
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Recent developments in bio-monitoring via advanced polymer nanocomposite-based wearable strain sensors.
    Lu Y; Biswas MC; Guo Z; Jeon JW; Wujcik EK
    Biosens Bioelectron; 2019 Jan; 123():167-177. PubMed ID: 30174272
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Monolithically integrated stretchable photonics.
    Li L; Lin H; Qiao S; Huang YZ; Li JY; Michon J; Gu T; Alosno-Ramos C; Vivien L; Yadav A; Richardson K; Lu N; Hu J
    Light Sci Appl; 2018; 7():17138. PubMed ID: 30839545
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Realization of single-mode telluride rib waveguides for mid-IR applications between 10 and 20 μm.
    Vigreux C; Barthélémy E; Bastard L; Broquin JE; Barillot M; Ménard S; Parent G; Pradel A
    Opt Lett; 2011 Aug; 36(15):2922-4. PubMed ID: 21808359
    [TBL] [Abstract][Full Text] [Related]  

  • 77. VLC, OCC, IR and LiFi Reliable Optical Wireless Technologies to be Embedded in Medical Facilities and Medical Devices.
    Riurean S; Antipova T; Rocha Á; Leba M; Ionica A
    J Med Syst; 2019 Aug; 43(10):308. PubMed ID: 31432270
    [TBL] [Abstract][Full Text] [Related]  

  • 78. PEDOT:PSS-Based Temperature-Detection Thread for Wearable Devices.
    Lee JW; Han DC; Shin HJ; Yeom SH; Ju BK; Lee W
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30205504
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Optical loss reduction in high-index-contrast chalcogenide glass waveguides via thermal reflow.
    Hu J; Feng NN; Carlie N; Petit L; Agarwal A; Richardson K; Kimerling L
    Opt Express; 2010 Jan; 18(2):1469-78. PubMed ID: 20173975
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Nanomaterial-Enabled Wearable Sensors for Healthcare.
    Yao S; Swetha P; Zhu Y
    Adv Healthc Mater; 2018 Jan; 7(1):. PubMed ID: 29193793
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.