These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 32709078)

  • 1. Proposal of a Lab Bench for the Unobtrusive Monitoring of the Bladder Fullness with Bioimpedance Measurements.
    Gaubert V; Gidik H; Koncar V
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32709078
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Small 8-Electrode Electrical Impedance Measurement Device for Urine Volume Estimation in the Bladder.
    Noyori SS; Nakagami G; Noguchi H; Mori T; Sanada H
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():7174-7177. PubMed ID: 34892755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A realistic pelvic phantom for electrical impedance measurement.
    Dunne E; McGinley B; O'Halloran M; Porter E
    Physiol Meas; 2018 Mar; 39(3):034001. PubMed ID: 29271359
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Textile band electrodes as an alternative to spot Ag/AgCl electrodes for calf bioimpedance measurements.
    Wang K; Zelko D; Delano M
    Biomed Phys Eng Express; 2019 Dec; 6(1):015010. PubMed ID: 33438598
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Textile electrodes in Electrical Bioimpedance measurements - a comparison with conventional Ag/AgCl electrodes.
    Marquez JC; Seoane F; Välimäki E; Lindecrantz K
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():4816-9. PubMed ID: 19963626
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robustness of focused and global impedance estimates of bladder volumes against uncertainty of urine conductivity.
    Leyton VHM; Bardia RB; Rodas CFR
    Biomed Phys Eng Express; 2020 May; 6(4):045008. PubMed ID: 33444269
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Textile electrode straps for wrist-to-ankle bioimpedance measurements for Body Composition Analysis. Initial validation & experimental results.
    Marquez JC; Ferreira J; Seoane F; Buendia R; Lindecrantz K
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():6385-8. PubMed ID: 21096699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of textile electrodes and conductors using standardized measurement setups.
    Beckmann L; Neuhaus C; Medrano G; Jungbecker N; Walter M; Gries T; Leonhardt S
    Physiol Meas; 2010 Feb; 31(2):233-47. PubMed ID: 20086274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrical impedance measurement of urinary bladder fullness.
    Abbey JC; Close L
    J Microw Power; 1983 Sep; 18(3):305-9. PubMed ID: 6558134
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Textrode functional straps for bioimpedance measurements--experimental results for body composition analysis.
    Márquez JC; Seoane F; Lindecrantz K
    Eur J Clin Nutr; 2013 Jan; 67 Suppl 1():S22-7. PubMed ID: 23299868
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of measurement electrode location in bladder urine monitoring using electrical impedance.
    Li Y; Peng Y; Yang X; Lu S; Gao J; Lin C; Li R
    Biomed Eng Online; 2019 Mar; 18(1):34. PubMed ID: 30902056
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization and Correction of Low Frequency Artifacts in Segmental Bioimpedance Measurements.
    Scagliusi SF; Delano M
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-5. PubMed ID: 38082581
    [TBL] [Abstract][Full Text] [Related]  

  • 13. AD5933-based electrical bioimpedance spectrometer. Towards textile-enabled applications.
    Ferreira J; Seoane F; Lindecrantz K
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():3282-5. PubMed ID: 22255040
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Thorax Simulator for Complex Dynamic Bioimpedance Measurements With Textile Electrodes.
    Ulbrich M; Muhlsteff J; Teichmann D; Leonhardt S; Walter M
    IEEE Trans Biomed Circuits Syst; 2015 Jun; 9(3):412-20. PubMed ID: 25148671
    [TBL] [Abstract][Full Text] [Related]  

  • 15. State of the Art of Non-Invasive Technologies for Bladder Monitoring: A Scoping Review.
    Hafid A; Difallah S; Alves C; Abdullah S; Folke M; Lindén M; Kristoffersson A
    Sensors (Basel); 2023 Mar; 23(5):. PubMed ID: 36904965
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Handheld and Textile-Enabled Bioimpedance System for Ubiquitous Body Composition Analysis. An Initial Functional Validation.
    Ferreira J; Pau I; Lindecrantz K; Seoane F
    IEEE J Biomed Health Inform; 2017 Sep; 21(5):1224-1232. PubMed ID: 28113962
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Textile-Integrated Liquid Metal Electrodes for Electrophysiological Monitoring.
    Li BM; Reese BL; Ingram K; Huddleston ME; Jenkins M; Zaets A; Reuter M; Grogg MW; Nelson MT; Zhou Y; Ju B; Sennik B; Farrell ZJ; Jur JS; Tabor CE
    Adv Healthc Mater; 2022 Sep; 11(18):e2200745. PubMed ID: 35734914
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Addition of internal electrodes is beneficial for focused bioimpedance measurements in the lung.
    Orschulik J; Hochhausen N; Czaplik M; Teichmann D; Leonhardt S; Walter M
    Physiol Meas; 2018 Mar; 39(3):035009. PubMed ID: 29406309
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Validating Adhesive-Free Bioimpedance of the Leg in Mid-Activity and Uncontrolled Settings.
    Nichols CJ; Mabrouk SA; Ozmen GC; Gazi AH; Inan OT
    IEEE Trans Biomed Eng; 2023 Sep; 70(9):2679-2689. PubMed ID: 37027282
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Supervised Learning Classifiers for Electrical Impedance-based Bladder State Detection.
    Dunne E; Santorelli A; McGinley B; Leader G; O'Halloran M; Porter E
    Sci Rep; 2018 Mar; 8(1):5363. PubMed ID: 29599451
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.