BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 32709320)

  • 1. A portable gas chromatograph for real-time monitoring of aromatic volatile organic compounds in air samples.
    You DW; Seon YS; Jang Y; Bang J; Oh JS; Jung KW
    J Chromatogr A; 2020 Aug; 1625():461267. PubMed ID: 32709320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A carbon nanotube sponge as an adsorbent for vapor preconcentration of aromatic volatile organic compounds.
    Bang J; You DW; Jang Y; Oh JS; Jung KW
    J Chromatogr A; 2019 Nov; 1605():460363. PubMed ID: 31320133
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon nanotube sponges as an enrichment material for aromatic volatile organic compounds.
    Jang Y; Bang J; Seon YS; You DW; Oh JS; Jung KW
    J Chromatogr A; 2020 Apr; 1617():460840. PubMed ID: 31948724
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of ion processes in a GC/DMS air quality monitor by integration of the instrument to a mass spectrometer.
    Limero TF; Nazarov EG; Menlyadiev M; Eiceman GA
    Analyst; 2015 Feb; 140(3):922-30. PubMed ID: 25501714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon nanotube field-effect transistor detector associated to gas chromatography for speciation of benzene, toluene, ethylbenzene, (o-, m- and p-)xylene.
    Silva LI; Ferreira FD; Rocha-Santos TA; Duarte AC
    J Chromatogr A; 2009 Sep; 1216(37):6517-21. PubMed ID: 19665718
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of a high-performance portable GC with a chemiresistor array detector.
    Zhong Q; Steinecker WH; Zellers ET
    Analyst; 2009 Feb; 134(2):283-93. PubMed ID: 19173051
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance characteristics of a new prototype for a portable GC using ambient air as carrier gas for on-site analysis.
    Sanchez JM; Sacks RD
    J Sep Sci; 2007 May; 30(7):1052-60. PubMed ID: 17566340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of a portable gas chromatograph with photoionization detector under variations of VOC concentration, temperature, and relative humidity.
    Soo JC; Lee EG; LeBouf RF; Kashon ML; Chisholm W; Harper M
    J Occup Environ Hyg; 2018 Apr; 15(4):351-360. PubMed ID: 29333991
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gas chromatography-optical fiber detector for the speciation of aromatic hydrocarbons in confined areas.
    Silva LI; Rocha-Santos TA; Duarte AC
    Anal Sci; 2008 Aug; 24(8):963-6. PubMed ID: 18689934
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and validation of an automated monitoring system for oxygenated volatile organic compounds and nitrile compounds in ambient air.
    Roukos J; Plaisance H; Leonardis T; Bates M; Locoge N
    J Chromatogr A; 2009 Dec; 1216(49):8642-51. PubMed ID: 19863965
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Portable gas chromatograph with tunable retention and sensor array detection for determination of complex vapor mixtures.
    Lu CJ; Whiting J; Sacks RD; Zellers ET
    Anal Chem; 2003 Mar; 75(6):1400-9. PubMed ID: 12659202
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterizing the Performance of a Compact BTEX GC-PID for Near-Real Time Analysis and Field Deployment.
    Frausto-Vicencio I; Moreno A; Goldsmith H; Hsu YK; Hopkins FM
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33802681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-speed analysis of complex indoor VOC mixtures by vacuum-outlet GC with air carrier gas and programmable retention.
    Grall AJ; Zellers ET; Sacks RD
    Environ Sci Technol; 2001 Jan; 35(1):163-9. PubMed ID: 11352005
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toward a microfabricated preconcentrator-focuser for a wearable micro-scale gas chromatograph.
    Bryant-Genevier J; Zellers ET
    J Chromatogr A; 2015 Nov; 1422():299-309. PubMed ID: 26530144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Online hourly determination of 62 VOCs in ambient air: system evaluation and comparison with another two analytical techniques.
    Durana N; Navazo M; Alonso L; García JA; Ilardia JL; Gómez MC; Gangoiti G
    J Air Waste Manag Assoc; 2002 Oct; 52(10):1176-85. PubMed ID: 12418729
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-stage preconcentrator/focuser module designed to enable trace level determinations of trichloroethylene in indoor air with a microfabricated gas chromatograph.
    Sukaew T; Chang H; Serrano G; Zellers ET
    Analyst; 2011 Apr; 136(8):1664-74. PubMed ID: 21359357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sub-ppb Level Detection of BTEX Gaseous Mixtures with a Compact Prototype GC Equipped with a Preconcentration Unit.
    Lara-Lbeas I; Rodríguez-Cuevas A; Andrikopoulou C; Person V; Baldas L; Colin S; Le Calvé S
    Micromachines (Basel); 2019 Mar; 10(3):. PubMed ID: 30871284
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Determination of volatile organic compounds in workplace by portable gas-chromatography].
    Rua Z; Tang H; Liu D; Zhu H; Pan J; Zou W; Qian Y
    Wei Sheng Yan Jiu; 2016 Mar; 45(2):268-72. PubMed ID: 27301228
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Simultaneous determination of seven chemicals of halogenated alkanes and aromatic hydrocarbons in the air of workplace by gas chromatography].
    Li TD; Zhou W; Yi J; Zhang W; Lin YR; Li SF
    Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi; 2011 Feb; 29(2):146-7. PubMed ID: 21619849
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photothermal desorption of single-walled carbon nanotubes and coconut shell-activated carbons using a continuous light source for application in air sampling.
    Floyd EL; Sapag K; Oh J; Lungu CT
    Ann Occup Hyg; 2014 Aug; 58(7):877-88. PubMed ID: 25016598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.