These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 32709325)

  • 1. Modified Gaussian models applied to the description and deconvolution of peaks in chiral liquid chromatography.
    Pérez-Baeza M; Escuder-Gilabert L; Medina-Hernández MJ; Baeza-Baeza JJ; García-Alvarez-Coque MC
    J Chromatogr A; 2020 Aug; 1625():461273. PubMed ID: 32709325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New approaches based on modified Gaussian models for the prediction of chromatographic peaks.
    Baeza-Baeza JJ; Ortiz-Bolsico C; García-Álvarez-Coque MC
    Anal Chim Acta; 2013 Jan; 758():36-44. PubMed ID: 23245894
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Parabolic-Lorentzian modified Gaussian model for describing and deconvolving chromatographic peaks.
    Caballero RD; García-Alvarez-Coque MC; Baeza-Baeza JJ
    J Chromatogr A; 2002 Apr; 954(1-2):59-76. PubMed ID: 12058919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Approaches to estimate the time and height at the peak maximum in liquid chromatography based on a modified Gaussian model.
    Baeza-Baeza JJ; Torres-Lapasió JR; García-Álvarez-Coque MC
    J Chromatogr A; 2011 Mar; 1218(10):1385-92. PubMed ID: 21295309
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of the capability of peak functions in describing real chromatographic peaks.
    Li J
    J Chromatogr A; 2002 Apr; 952(1-2):63-70. PubMed ID: 12064546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of chromatographic peaks using the linearly modified Gaussian model. Comparison with the bi-Gaussian and the Foley and Dorsey approaches.
    Baeza-Baeza JJ; García-Alvarez-Coque MC
    J Chromatogr A; 2017 Sep; 1515():129-137. PubMed ID: 28802524
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new mathematical function for describing electrophoretic peaks.
    García-Alvarez-Coque MC; Simó-Alfonso EF; Sanchis-Mallols JM; Baeza-Baeza JJ
    Electrophoresis; 2005 Jun; 26(11):2076-85. PubMed ID: 15880552
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of peak shape as a function of retention in reversed-phase liquid chromatography.
    Baeza-Baeza JJ; García-Alvarez-Coque MC
    J Chromatogr A; 2004 Jan; 1022(1-2):17-24. PubMed ID: 14753767
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and evaluation of flexible empirical peak functions for processing chromatographic peaks.
    Li J
    Anal Chem; 1997 Nov; 69(21):4452-62. PubMed ID: 21639177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scope of partial least-squares regression applied to the enantiomeric composition determination of ketoprofen from strongly overlapped chromatographic profiles.
    Padró JM; Osorio-Grisales J; Arancibia JA; Olivieri AC; Castells CB
    J Sep Sci; 2015 Jul; 38(14):2423-30. PubMed ID: 25929676
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the equations describing chromatographic peaks and the problem of the deconvolution of overlapped peaks.
    Nikitas P; Pappa-Louisi A; Papageorgiou A
    J Chromatogr A; 2001 Mar; 912(1):13-29. PubMed ID: 11307976
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct chiral liquid chromatography determination of aryloxyphenoxypropionic herbicides in soil: deconvolution tools for peak processing.
    Guillén-Casla V; Magro-Moral J; Rosales-Conrado N; Pérez-Arribas LV; León-González ME; Polo-Díez LM
    Anal Bioanal Chem; 2011 Jul; 400(10):3547-60. PubMed ID: 21487707
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Data dependent peak model based spectrum deconvolution for analysis of high resolution LC-MS data.
    Wei X; Shi X; Kim S; Patrick JS; Binkley J; Kong M; McClain C; Zhang X
    Anal Chem; 2014 Feb; 86(4):2156-65. PubMed ID: 24533635
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic program for peak detection and deconvolution of multi-overlapped chromatographic signals part II: peak model and deconvolution algorithms.
    Vivó-Truyols G; Torres-Lapasió JR; van Nederkassel AM; Vander Heyden Y; Massart DL
    J Chromatogr A; 2005 Nov; 1096(1-2):146-55. PubMed ID: 16301077
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical and experimental study of binary perturbation peaks with focus on peculiar retention behaviour and vanishing peaks in chiral liquid chromatography.
    Forsén P; Lindholm J; Fornstedt T
    J Chromatogr A; 2003 Mar; 991(1):31-45. PubMed ID: 12703899
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Symmetrization of Peaks in Chiral Chromatography with an Area-Invariant Resolution Enhancement Method.
    Handlovic TT; Wahab MF; Armstrong DW
    Anal Chem; 2022 Dec; 94(48):16638-16646. PubMed ID: 36395322
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of theoretical and semi-empirical peak models on the efficiency calculation in chiral chromatography.
    Burk RJ; Wahab MF; Armstrong DW
    Talanta; 2024 Sep; 277():126308. PubMed ID: 38820823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fitting Lorentzian peaks with evolutionary genetic algorithm based on stochastic search procedure.
    Karakaplan M
    Anal Chim Acta; 2007 Mar; 587(2):235-9. PubMed ID: 17386778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New chiral stationary phases based on xanthone derivatives for liquid chromatography.
    Fernandes C; Tiritan ME; Cravo S; Phyo YZ; Kijjoa A; Silva AMS; Cass QB; Pinto MMM
    Chirality; 2017 Aug; 29(8):430-442. PubMed ID: 28608589
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A hybrid of exponential and gaussian functions as a simple model of asymmetric chromatographic peaks.
    Lan K; Jorgenson JW
    J Chromatogr A; 2001 Apr; 915(1-2):1-13. PubMed ID: 11358238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.