These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 32709364)
1. Pressure-Flow experiments, packing, and modeling for scale-up of a mixed mode chromatography column for biopharmaceutical manufacturing. Prentice J; Evans ST; Robbins D; Ferreira G J Chromatogr A; 2020 Aug; 1625():461117. PubMed ID: 32709364 [TBL] [Abstract][Full Text] [Related]
2. Pressure-flow relationships for packed beds of compressible chromatography media at laboratory and production scale. Stickel JJ; Fotopoulos A Biotechnol Prog; 2001; 17(4):744-51. PubMed ID: 11485438 [TBL] [Abstract][Full Text] [Related]
3. Advancement in the modeling of pressure-flow for the guidance of development and scale-up of commercial-scale biopharmaceutical chromatography. Keener RN; Fernandez EJ; Maneval JE; Hart RA J Chromatogr A; 2008 May; 1190(1-2):127-40. PubMed ID: 18374935 [TBL] [Abstract][Full Text] [Related]
4. Toward a robust model of packing and scale-up for chromatographic beds. 1. Mechanical compression. Keener RN; Maneval JE; Fernandez EJ Biotechnol Prog; 2004; 20(4):1146-58. PubMed ID: 15296442 [TBL] [Abstract][Full Text] [Related]
5. Packing of large-scale chromatography columns with irregularly shaped glass based resins using a stop-flow method. Siu SC; Chia C; Mok Y; Pattnaik P Biotechnol Prog; 2014; 30(6):1319-25. PubMed ID: 25080096 [TBL] [Abstract][Full Text] [Related]
6. Modeling of transient flow through a viscoelastic preparative chromatography packing. Hekmat D; Kuhn M; Meinhardt V; Weuster-Botz D Biotechnol Prog; 2013; 29(4):958-67. PubMed ID: 23798499 [TBL] [Abstract][Full Text] [Related]
7. Practical considerations on the particle size and permeability of ion-exchange columns applied to biopharmaceutical separations. Murisier A; Lauber M; Shiner SJ; Guillarme D; Fekete S J Chromatogr A; 2019 Oct; 1604():460487. PubMed ID: 31488296 [TBL] [Abstract][Full Text] [Related]
8. Multiproduct Resin Reuse for Clinical and Commercial Manufacturing-Methodology and Acceptance Criteria. Sharnez R; Doares S; Manning S; Mehta K; Mahajan E; To A; Daniels W; Glynn J; Dhamane S; Wen X; Wang Y; Gour P; Guenther C; Foley D; Hayes R; Mott A; Prabhu S; Tavalsky D; Hendershot M; Haas D; Hesslein A; Schuelke N; Tjandra H PDA J Pharm Sci Technol; 2018; 72(6):584-598. PubMed ID: 30030349 [TBL] [Abstract][Full Text] [Related]
9. Axial development and radial non-uniformity of flow in packed columns. Park JC; Raghavan K; Gibbs SJ J Chromatogr A; 2002 Feb; 945(1-2):65-81. PubMed ID: 11860146 [TBL] [Abstract][Full Text] [Related]
10. Simulation of the dynamic packing behavior of preparative chromatography columns via discrete particle modeling. Dorn M; Hekmat D Biotechnol Prog; 2016 Mar; 32(2):363-71. PubMed ID: 26588806 [TBL] [Abstract][Full Text] [Related]
11. Influence of different packing methods on the hydrodynamic stability of chromatography columns. Dorn M; Eschbach F; Hekmat D; Weuster-Botz D J Chromatogr A; 2017 Sep; 1516():89-101. PubMed ID: 28818329 [TBL] [Abstract][Full Text] [Related]
12. Analysis of packing microstructure and wall effects in a narrow-bore ultrahigh pressure liquid chromatography column using focused ion-beam scanning electron microscopy. Reising AE; Schlabach S; Baranau V; Stoeckel D; Tallarek U J Chromatogr A; 2017 Sep; 1513():172-182. PubMed ID: 28739273 [TBL] [Abstract][Full Text] [Related]
13. IgG adsorption on a new protein A adsorbent based on macroporous hydrophilic polymers II. Pressure-flow curves and optimization for capture. Perez-Almodovar EX; Carta G J Chromatogr A; 2009 Nov; 1216(47):8348-54. PubMed ID: 19786279 [TBL] [Abstract][Full Text] [Related]
14. Effect of bed compression on high-performance liquid chromatography columns with gigaporous polymeric packings. Freitag R; Frey D; Horváth C J Chromatogr A; 1994 Dec; 686(2):165-77. PubMed ID: 7881529 [TBL] [Abstract][Full Text] [Related]
15. Macroscopic investigation of the transient hydrodynamic memory behavior of preparative packed chromatography beds. Hekmat D; Mornhinweg R; Bloch G; Sun Y; Jeanty P; Neubert M; Weuster-Botz D J Chromatogr A; 2011 Feb; 1218(7):944-50. PubMed ID: 21238971 [TBL] [Abstract][Full Text] [Related]
16. Use of ultrasound to monitor the packing of large-scale columns, the monitoring of media compression and the passage of molecules, such as monoclonal antibodies, through the column bed during chromatography. Hofmann M J Chromatogr A; 2003 Mar; 989(1):79-94. PubMed ID: 12641285 [TBL] [Abstract][Full Text] [Related]
17. Toward a robust model of packing and scale-up for chromatographic beds. 2. Flow packing. Keener RN; Maneval JE; Fernandez EJ Biotechnol Prog; 2004; 20(4):1159-68. PubMed ID: 15296443 [TBL] [Abstract][Full Text] [Related]
18. Spherical nanoparticles can be used as non-penetrating tracers to determine the extra-particle void volume in packed-bed chromatography columns. Frank K; Bernau CR; Buyel JF J Chromatogr A; 2022 Jul; 1675():463174. PubMed ID: 35635874 [TBL] [Abstract][Full Text] [Related]
19. Retrospective Evaluation of Cycled Resin in Viral Clearance Studies-A Multiple Company Collaboration. Mattila J; Curtis S; Webb-Vargas Y; Wilson E; Galperina O; Roush D; Tobler S; Stanley B; Clark M; Weaver J; Pike J; Yu D; Li X; Flicker A; Kindermann J; Schuelke N; Whitcombe R; Bennett L PDA J Pharm Sci Technol; 2019; 73(5):470-486. PubMed ID: 31101706 [TBL] [Abstract][Full Text] [Related]