BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 32709749)

  • 1. Evidence that polyphenols do not inhibit the phospholipid scramblase TMEM16F.
    Le T; Le SC; Zhang Y; Liang P; Yang H
    J Biol Chem; 2020 Aug; 295(35):12537-12544. PubMed ID: 32709749
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of TMEM16A/ANO1 and TMEM16F/ANO6 ion currents and phospholipid scrambling by Ca
    Schreiber R; Ousingsawat J; Wanitchakool P; Sirianant L; Benedetto R; Reiss K; Kunzelmann K
    J Physiol; 2018 Jan; 596(2):217-229. PubMed ID: 29134661
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An inner activation gate controls TMEM16F phospholipid scrambling.
    Le T; Jia Z; Le SC; Zhang Y; Chen J; Yang H
    Nat Commun; 2019 Apr; 10(1):1846. PubMed ID: 31015464
    [TBL] [Abstract][Full Text] [Related]  

  • 4.
    Le T; Le SC; Yang H
    J Biol Chem; 2019 Mar; 294(12):4529-4537. PubMed ID: 30700552
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of the scrambling domain of the TMEM16 family.
    Gyobu S; Ishihara K; Suzuki J; Segawa K; Nagata S
    Proc Natl Acad Sci U S A; 2017 Jun; 114(24):6274-6279. PubMed ID: 28559311
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure-Function of TMEM16 Ion Channels and Lipid Scramblases.
    Le SC; Yang H
    Adv Exp Med Biol; 2021; 1349():87-109. PubMed ID: 35138612
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calcium-dependent phospholipid scramblase activity of TMEM16 protein family members.
    Suzuki J; Fujii T; Imao T; Ishihara K; Kuba H; Nagata S
    J Biol Chem; 2013 May; 288(19):13305-16. PubMed ID: 23532839
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-molecule analysis of phospholipid scrambling by TMEM16F.
    Watanabe R; Sakuragi T; Noji H; Nagata S
    Proc Natl Acad Sci U S A; 2018 Mar; 115(12):3066-3071. PubMed ID: 29507235
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cryo-EM structures and functional characterization of the murine lipid scramblase TMEM16F.
    Alvadia C; Lim NK; Clerico Mosina V; Oostergetel GT; Dutzler R; Paulino C
    Elife; 2019 Feb; 8():. PubMed ID: 30785399
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ion channel and lipid scramblase activity associated with expression of TMEM16F/ANO6 isoforms.
    Scudieri P; Caci E; Venturini A; Sondo E; Pianigiani G; Marchetti C; Ravazzolo R; Pagani F; Galietta LJ
    J Physiol; 2015 Sep; 593(17):3829-48. PubMed ID: 26108457
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reconstitution of Proteoliposomes for Phospholipid Scrambling and Nonselective Channel Assays.
    Falzone ME; Accardi A
    Methods Mol Biol; 2020; 2127():207-225. PubMed ID: 32112325
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The allosteric mechanism leading to an open-groove lipid conductive state of the TMEM16F scramblase.
    Khelashvili G; Kots E; Cheng X; Levine MV; Weinstein H
    Commun Biol; 2022 Sep; 5(1):990. PubMed ID: 36123525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional swapping between transmembrane proteins TMEM16A and TMEM16F.
    Suzuki T; Suzuki J; Nagata S
    J Biol Chem; 2014 Mar; 289(11):7438-47. PubMed ID: 24478309
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ca2+-dependent phospholipid scrambling by a reconstituted TMEM16 ion channel.
    Malvezzi M; Chalat M; Janjusevic R; Picollo A; Terashima H; Menon AK; Accardi A
    Nat Commun; 2013; 4():2367. PubMed ID: 23996062
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lysophosphatidic acid-induced pro-thrombotic phosphatidylserine exposure and ionophore-induced microvesiculation is mediated by the scramblase TMEM16F in erythrocytes.
    Öhlinger T; Müllner EW; Fritz M; Sauer T; Werning M; Baron DM; Salzer U
    Blood Cells Mol Dis; 2020 Jul; 83():102426. PubMed ID: 32222693
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphatidylinositol-(4, 5)-bisphosphate regulates calcium gating of small-conductance cation channel TMEM16F.
    Ye W; Han TW; Nassar LM; Zubia M; Jan YN; Jan LY
    Proc Natl Acad Sci U S A; 2018 Feb; 115(7):E1667-E1674. PubMed ID: 29382763
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scrambling of natural and fluorescently tagged phosphatidylinositol by reconstituted G protein-coupled receptor and TMEM16 scramblases.
    Wang L; Iwasaki Y; Andra KK; Pandey K; Menon AK; Bütikofer P
    J Biol Chem; 2018 Nov; 293(47):18318-18327. PubMed ID: 30287690
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An ancestral TMEM16 homolog from Dictyostelium discoideum forms a scramblase.
    Pelz T; Drose DR; Fleck D; Henkel B; Ackels T; Spehr M; Neuhaus EM
    PLoS One; 2018; 13(2):e0191219. PubMed ID: 29444117
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemically induced vesiculation as a platform for studying TMEM16F activity.
    Han TW; Ye W; Bethel NP; Zubia M; Kim A; Li KH; Burlingame AL; Grabe M; Jan YN; Jan LY
    Proc Natl Acad Sci U S A; 2019 Jan; 116(4):1309-1318. PubMed ID: 30622179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic change of electrostatic field in TMEM16F permeation pathway shifts its ion selectivity.
    Ye W; Han TW; He M; Jan YN; Jan LY
    Elife; 2019 Jul; 8():. PubMed ID: 31318330
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.