BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 32709924)

  • 21. Targeting Cancer Metabolism: Dietary and Pharmacologic Interventions.
    Vernieri C; Casola S; Foiani M; Pietrantonio F; de Braud F; Longo V
    Cancer Discov; 2016 Dec; 6(12):1315-1333. PubMed ID: 27872127
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recognition of early and late stages of bladder cancer using metabolites and machine learning.
    Kouznetsova VL; Kim E; Romm EL; Zhu A; Tsigelny IF
    Metabolomics; 2019 Jun; 15(7):94. PubMed ID: 31222577
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Integration of cancer gene co-expression network and metabolic network to uncover potential cancer drug targets.
    Chen J; Ma M; Shen N; Xi JJ; Tian W
    J Proteome Res; 2013 Jun; 12(6):2354-64. PubMed ID: 23590569
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of breast cancers and therapy response by MRS and quantitative gene expression profiling in the choline pathway.
    Morse DL; Carroll D; Day S; Gray H; Sadarangani P; Murthi S; Job C; Baggett B; Raghunand N; Gillies RJ
    NMR Biomed; 2009 Jan; 22(1):114-27. PubMed ID: 19016452
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Oncometabolites: A New Paradigm for Oncology, Metabolism, and the Clinical Laboratory.
    Collins RRJ; Patel K; Putnam WC; Kapur P; Rakheja D
    Clin Chem; 2017 Dec; 63(12):1812-1820. PubMed ID: 29038145
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Engineering dynamic pathway regulation using stress-response promoters.
    Dahl RH; Zhang F; Alonso-Gutierrez J; Baidoo E; Batth TS; Redding-Johanson AM; Petzold CJ; Mukhopadhyay A; Lee TS; Adams PD; Keasling JD
    Nat Biotechnol; 2013 Nov; 31(11):1039-46. PubMed ID: 24142050
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Subpathway-GM: identification of metabolic subpathways via joint power of interesting genes and metabolites and their topologies within pathways.
    Li C; Han J; Yao Q; Zou C; Xu Y; Zhang C; Shang D; Zhou L; Zou C; Sun Z; Li J; Zhang Y; Yang H; Gao X; Li X
    Nucleic Acids Res; 2013 May; 41(9):e101. PubMed ID: 23482392
    [TBL] [Abstract][Full Text] [Related]  

  • 28. ATP-citrate lyase: a key player in cancer metabolism.
    Zaidi N; Swinnen JV; Smans K
    Cancer Res; 2012 Aug; 72(15):3709-14. PubMed ID: 22787121
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Complex Metabolic Network Confers Immunosuppressive Functions to Myeloid-Derived Suppressor Cells (MDSCs) within the Tumour Microenvironment.
    Hofer F; Di Sario G; Musiu C; Sartoris S; De Sanctis F; Ugel S
    Cells; 2021 Oct; 10(10):. PubMed ID: 34685679
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Targeting the stress support network regulated by autophagy and senescence for cancer treatment.
    Kim J; Lee Y; Roh K; Kim MS; Kang C
    Adv Cancer Res; 2021; 150():75-112. PubMed ID: 33858601
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Shared Selective Pressures on Fungal and Human Metabolic Pathways Lead to Divergent yet Analogous Genetic Responses.
    Eidem HR; McGary KL; Rokas A
    Mol Biol Evol; 2015 Jun; 32(6):1449-55. PubMed ID: 25681382
    [TBL] [Abstract][Full Text] [Related]  

  • 32. SnapShot: Cancer metabolism.
    Brunner JS; Finley LWS
    Mol Cell; 2021 Sep; 81(18):3878-3878.e1. PubMed ID: 34547243
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Impact of Non-Enzymatic Reactions and Enzyme Promiscuity on Cellular Metabolism during (Oxidative) Stress Conditions.
    Piedrafita G; Keller MA; Ralser M
    Biomolecules; 2015 Sep; 5(3):2101-22. PubMed ID: 26378592
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Massively Parallel Fitness Profiling Reveals Multiple Novel Enzymes in
    Thompson MG; Blake-Hedges JM; Cruz-Morales P; Barajas JF; Curran SC; Eiben CB; Harris NC; Benites VT; Gin JW; Sharpless WA; Twigg FF; Skyrud W; Krishna RN; Pereira JH; Baidoo EEK; Petzold CJ; Adams PD; Arkin AP; Deutschbauer AM; Keasling JD
    mBio; 2019 May; 10(3):. PubMed ID: 31064836
    [TBL] [Abstract][Full Text] [Related]  

  • 35. MUCHA: multiple chemical alignment algorithm to identify building block substructures of orphan secondary metabolites.
    Kotera M; Tokimatsu T; Kanehisa M; Goto S
    BMC Bioinformatics; 2011 Dec; 12 Suppl 14(Suppl 14):S1. PubMed ID: 22373367
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Engineered Production of Short-Chain Acyl-Coenzyme A Esters in Saccharomyces cerevisiae.
    Krink-Koutsoubelis N; Loechner AC; Lechner A; Link H; Denby CM; Vögeli B; Erb TJ; Yuzawa S; Jakociunas T; Katz L; Jensen MK; Sourjik V; Keasling JD
    ACS Synth Biol; 2018 Apr; 7(4):1105-1115. PubMed ID: 29498824
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Beyond the Biosynthetic Gene Cluster Paradigm: Genome-Wide Coexpression Networks Connect Clustered and Unclustered Transcription Factors to Secondary Metabolic Pathways.
    Kwon MJ; Steiniger C; Cairns TC; Wisecaver JH; Lind AL; Pohl C; Regner C; Rokas A; Meyer V
    Microbiol Spectr; 2021 Oct; 9(2):e0089821. PubMed ID: 34523946
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Production of bulk chemicals via novel metabolic pathways in microorganisms.
    Shin JH; Kim HU; Kim DI; Lee SY
    Biotechnol Adv; 2013 Nov; 31(6):925-35. PubMed ID: 23280013
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Application of artificial neural network to investigate the effects of 5-fluorouracil on ribonucleotides and deoxyribonucleotides in HepG2 cells.
    Guo J; Chen Q; Lam CW; Wang C; Wong VK; Xu F; Jiang Z; Zhang W
    Sci Rep; 2015 Nov; 5():16861. PubMed ID: 26578061
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Gluconeogenesis in cancer cells - Repurposing of a starvation-induced metabolic pathway?
    Grasmann G; Smolle E; Olschewski H; Leithner K
    Biochim Biophys Acta Rev Cancer; 2019 Aug; 1872(1):24-36. PubMed ID: 31152822
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.