These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 32710088)

  • 1. Unique cysteine-enriched, D2L5 and D4L6 extracellular loops in Ca
    Guan W; Stephens RF; Mourad O; Mehta A; Fux J; Spafford JD
    Sci Rep; 2020 Jul; 10(1):12404. PubMed ID: 32710088
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A lysine residue from an extracellular turret switches the ion preference in a Cav3 T-Type channel from calcium to sodium ions.
    Guan W; Orellana KG; Stephens RF; Zhorov BS; Spafford JD
    J Biol Chem; 2022 Dec; 298(12):102621. PubMed ID: 36272643
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calmodulin regulates Ca
    Chemin J; Taiakina V; Monteil A; Piazza M; Guan W; Stephens RF; Kitmitto A; Pang ZP; Dolphin AC; Perez-Reyes E; Dieckmann T; Guillemette JG; Spafford JD
    J Biol Chem; 2017 Dec; 292(49):20010-20031. PubMed ID: 28972185
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cav3 T-type channels: regulators for gating, membrane expression, and cation selectivity.
    Senatore A; Guan W; Spafford JD
    Pflugers Arch; 2014 Apr; 466(4):645-60. PubMed ID: 24515291
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolutionary insights into T-type Ca
    Smith CL; Abdallah S; Wong YY; Le P; Harracksingh AN; Artinian L; Tamvacakis AN; Rehder V; Reese TS; Senatore A
    J Gen Physiol; 2017 Apr; 149(4):483-510. PubMed ID: 28330839
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selectivity filters and cysteine-rich extracellular loops in voltage-gated sodium, calcium, and NALCN channels.
    Stephens RF; Guan W; Zhorov BS; Spafford JD
    Front Physiol; 2015; 6():153. PubMed ID: 26042044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Delineating an extracellular redox-sensitive module in T-type Ca
    Huang D; Shi S; Liang C; Zhang X; Du X; An H; Peers C; Zhang H; Gamper N
    J Biol Chem; 2020 May; 295(18):6177-6186. PubMed ID: 32188693
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An inner pore residue (Asn406) in the Nav1.5 channel controls slow inactivation and enhances mibefradil block to T-type Ca2+ channel levels.
    McNulty MM; Kyle JW; Lipkind GM; Hanck DA
    Mol Pharmacol; 2006 Nov; 70(5):1514-23. PubMed ID: 16885209
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression of calcium channel transcripts in the zebrafish heart: dominance of T-type channels.
    Haverinen J; Hassinen M; Dash SN; Vornanen M
    J Exp Biol; 2018 May; 221(Pt 10):. PubMed ID: 29739832
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low voltage activation of KCa1.1 current by Cav3-KCa1.1 complexes.
    Rehak R; Bartoletti TM; Engbers JD; Berecki G; Turner RW; Zamponi GW
    PLoS One; 2013; 8(4):e61844. PubMed ID: 23626738
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calcium channel selectivity for divalent and monovalent cations. Voltage and concentration dependence of single channel current in ventricular heart cells.
    Hess P; Lansman JB; Tsien RW
    J Gen Physiol; 1986 Sep; 88(3):293-319. PubMed ID: 2428919
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ni2+ block of CaV3.1 (alpha1G) T-type calcium channels.
    Obejero-Paz CA; Gray IP; Jones SW
    J Gen Physiol; 2008 Aug; 132(2):239-50. PubMed ID: 18663132
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Eukaryotic Voltage-Gated Sodium Channels: On Their Origins, Asymmetries, Losses, Diversification and Adaptations.
    Fux JE; Mehta A; Moffat J; Spafford JD
    Front Physiol; 2018; 9():1406. PubMed ID: 30519187
    [TBL] [Abstract][Full Text] [Related]  

  • 14. T-type channels become highly permeable to sodium ions using an alternative extracellular turret region (S5-P) outside the selectivity filter.
    Senatore A; Guan W; Boone AN; Spafford JD
    J Biol Chem; 2014 Apr; 289(17):11952-11969. PubMed ID: 24596098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ca2+-dependent inactivation of CaV1.2 channels prevents Gd3+ block: does Ca2+ block the pore of inactivated channels?
    Babich O; Matveev V; Harris AL; Shirokov R
    J Gen Physiol; 2007 Jun; 129(6):477-83. PubMed ID: 17535960
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Zn2+ sensitivity of high- and low-voltage activated calcium channels.
    Sun HS; Hui K; Lee DW; Feng ZP
    Biophys J; 2007 Aug; 93(4):1175-83. PubMed ID: 17526568
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Emerging issues of connexin channels: biophysics fills the gap.
    Harris AL
    Q Rev Biophys; 2001 Aug; 34(3):325-472. PubMed ID: 11838236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling interactions between voltage-gated Ca (2+) channels and KCa1.1 channels.
    Engbers JD; Zamponi GW; Turner RW
    Channels (Austin); 2013; 7(6):524-9. PubMed ID: 23928916
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular pore structure of voltage-gated sodium and calcium channels.
    Heinemann SH; Schlief T; Mori Y; Imoto K
    Braz J Med Biol Res; 1994 Dec; 27(12):2781-802. PubMed ID: 7550000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the gating brake in the I-II loop of CaV3 T-type calcium channels.
    Perez-Reyes E
    Channels (Austin); 2010; 4(6):453-8. PubMed ID: 21099341
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.