BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 32710088)

  • 1. Unique cysteine-enriched, D2L5 and D4L6 extracellular loops in Ca
    Guan W; Stephens RF; Mourad O; Mehta A; Fux J; Spafford JD
    Sci Rep; 2020 Jul; 10(1):12404. PubMed ID: 32710088
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A lysine residue from an extracellular turret switches the ion preference in a Cav3 T-Type channel from calcium to sodium ions.
    Guan W; Orellana KG; Stephens RF; Zhorov BS; Spafford JD
    J Biol Chem; 2022 Dec; 298(12):102621. PubMed ID: 36272643
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calmodulin regulates Ca
    Chemin J; Taiakina V; Monteil A; Piazza M; Guan W; Stephens RF; Kitmitto A; Pang ZP; Dolphin AC; Perez-Reyes E; Dieckmann T; Guillemette JG; Spafford JD
    J Biol Chem; 2017 Dec; 292(49):20010-20031. PubMed ID: 28972185
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cav3 T-type channels: regulators for gating, membrane expression, and cation selectivity.
    Senatore A; Guan W; Spafford JD
    Pflugers Arch; 2014 Apr; 466(4):645-60. PubMed ID: 24515291
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolutionary insights into T-type Ca
    Smith CL; Abdallah S; Wong YY; Le P; Harracksingh AN; Artinian L; Tamvacakis AN; Rehder V; Reese TS; Senatore A
    J Gen Physiol; 2017 Apr; 149(4):483-510. PubMed ID: 28330839
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selectivity filters and cysteine-rich extracellular loops in voltage-gated sodium, calcium, and NALCN channels.
    Stephens RF; Guan W; Zhorov BS; Spafford JD
    Front Physiol; 2015; 6():153. PubMed ID: 26042044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Delineating an extracellular redox-sensitive module in T-type Ca
    Huang D; Shi S; Liang C; Zhang X; Du X; An H; Peers C; Zhang H; Gamper N
    J Biol Chem; 2020 May; 295(18):6177-6186. PubMed ID: 32188693
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An inner pore residue (Asn406) in the Nav1.5 channel controls slow inactivation and enhances mibefradil block to T-type Ca2+ channel levels.
    McNulty MM; Kyle JW; Lipkind GM; Hanck DA
    Mol Pharmacol; 2006 Nov; 70(5):1514-23. PubMed ID: 16885209
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression of calcium channel transcripts in the zebrafish heart: dominance of T-type channels.
    Haverinen J; Hassinen M; Dash SN; Vornanen M
    J Exp Biol; 2018 May; 221(Pt 10):. PubMed ID: 29739832
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low voltage activation of KCa1.1 current by Cav3-KCa1.1 complexes.
    Rehak R; Bartoletti TM; Engbers JD; Berecki G; Turner RW; Zamponi GW
    PLoS One; 2013; 8(4):e61844. PubMed ID: 23626738
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calcium channel selectivity for divalent and monovalent cations. Voltage and concentration dependence of single channel current in ventricular heart cells.
    Hess P; Lansman JB; Tsien RW
    J Gen Physiol; 1986 Sep; 88(3):293-319. PubMed ID: 2428919
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ni2+ block of CaV3.1 (alpha1G) T-type calcium channels.
    Obejero-Paz CA; Gray IP; Jones SW
    J Gen Physiol; 2008 Aug; 132(2):239-50. PubMed ID: 18663132
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Eukaryotic Voltage-Gated Sodium Channels: On Their Origins, Asymmetries, Losses, Diversification and Adaptations.
    Fux JE; Mehta A; Moffat J; Spafford JD
    Front Physiol; 2018; 9():1406. PubMed ID: 30519187
    [TBL] [Abstract][Full Text] [Related]  

  • 14. T-type channels become highly permeable to sodium ions using an alternative extracellular turret region (S5-P) outside the selectivity filter.
    Senatore A; Guan W; Boone AN; Spafford JD
    J Biol Chem; 2014 Apr; 289(17):11952-11969. PubMed ID: 24596098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ca2+-dependent inactivation of CaV1.2 channels prevents Gd3+ block: does Ca2+ block the pore of inactivated channels?
    Babich O; Matveev V; Harris AL; Shirokov R
    J Gen Physiol; 2007 Jun; 129(6):477-83. PubMed ID: 17535960
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Zn2+ sensitivity of high- and low-voltage activated calcium channels.
    Sun HS; Hui K; Lee DW; Feng ZP
    Biophys J; 2007 Aug; 93(4):1175-83. PubMed ID: 17526568
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Emerging issues of connexin channels: biophysics fills the gap.
    Harris AL
    Q Rev Biophys; 2001 Aug; 34(3):325-472. PubMed ID: 11838236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling interactions between voltage-gated Ca (2+) channels and KCa1.1 channels.
    Engbers JD; Zamponi GW; Turner RW
    Channels (Austin); 2013; 7(6):524-9. PubMed ID: 23928916
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular pore structure of voltage-gated sodium and calcium channels.
    Heinemann SH; Schlief T; Mori Y; Imoto K
    Braz J Med Biol Res; 1994 Dec; 27(12):2781-802. PubMed ID: 7550000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the gating brake in the I-II loop of CaV3 T-type calcium channels.
    Perez-Reyes E
    Channels (Austin); 2010; 4(6):453-8. PubMed ID: 21099341
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.