These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 32710120)
1. New evidence defining the evolutionary path of aquaporins regulating silicon uptake in land plants. Deshmukh R; Sonah H; Belanger RR J Exp Bot; 2020 Dec; 71(21):6775-6788. PubMed ID: 32710120 [TBL] [Abstract][Full Text] [Related]
2. A precise spacing between the NPA domains of aquaporins is essential for silicon permeability in plants. Deshmukh RK; Vivancos J; Ramakrishnan G; Guérin V; Carpentier G; Sonah H; Labbé C; Isenring P; Belzile FJ; Bélanger RR Plant J; 2015 Aug; 83(3):489-500. PubMed ID: 26095507 [TBL] [Abstract][Full Text] [Related]
3. The structure, function and expression analysis of the nodulin 26-like intrinsic protein subfamily of plant aquaporins in tomato. Zhang Y; Fei S; Xu Y; He Y; Zhu Z; Liu Y Sci Rep; 2022 Jun; 12(1):9180. PubMed ID: 35655083 [TBL] [Abstract][Full Text] [Related]
4. Silicon-mediated Improvement in Plant Salinity Tolerance: The Role of Aquaporins. Rios JJ; Martínez-Ballesta MC; Ruiz JM; Blasco B; Carvajal M Front Plant Sci; 2017; 8():948. PubMed ID: 28642767 [TBL] [Abstract][Full Text] [Related]
5. Functional evolution of nodulin 26-like intrinsic proteins: from bacterial arsenic detoxification to plant nutrient transport. Pommerrenig B; Diehn TA; Bernhardt N; Bienert MD; Mitani-Ueno N; Fuge J; Bieber A; Spitzer C; Bräutigam A; Ma JF; Chaumont F; Bienert GP New Phytol; 2020 Feb; 225(3):1383-1396. PubMed ID: 31550387 [TBL] [Abstract][Full Text] [Related]
6. Identification of VrNIP2-1 aquaporin with novel selective filter regulating the transport of beneficial as well as hazardous metalloids in mungbean (Vigna radiata L.). Thakral V; Sharma Y; Mandlik R; Kumawat S; Patil G; Sonah H; Isenring P; Bélanger R; Sharma TR; Deshmukh R Plant Physiol Biochem; 2023 Oct; 203():108057. PubMed ID: 37793194 [TBL] [Abstract][Full Text] [Related]
7. Understanding Aquaporin Transport System in Eelgrass ( Shivaraj SM; Deshmukh R; Bhat JA; Sonah H; Bélanger RR Front Plant Sci; 2017; 8():1334. PubMed ID: 28824671 [TBL] [Abstract][Full Text] [Related]
8. Protein encoding genes in an ancient plant: analysis of codon usage, retained genes and splice sites in a moss, Physcomitrella patens. Rensing SA; Fritzowsky D; Lang D; Reski R BMC Genomics; 2005 Mar; 6():43. PubMed ID: 15784153 [TBL] [Abstract][Full Text] [Related]
9. Silicon-mediated abiotic and biotic stress mitigation in plants: Underlying mechanisms and potential for stress resilient agriculture. Ranjan A; Sinha R; Bala M; Pareek A; Singla-Pareek SL; Singh AK Plant Physiol Biochem; 2021 Jun; 163():15-25. PubMed ID: 33799014 [TBL] [Abstract][Full Text] [Related]
10. A cooperative system of silicon transport in plants. Ma JF; Yamaji N Trends Plant Sci; 2015 Jul; 20(7):435-42. PubMed ID: 25983205 [TBL] [Abstract][Full Text] [Related]
11. The grapevine NIP2;1 aquaporin is a silicon channel. Noronha H; Silva A; Mitani-Ueno N; Conde C; Sabir F; Prista C; Soveral G; Isenring P; Ma JF; Bélanger RR; Gerós H J Exp Bot; 2020 Dec; 71(21):6789-6798. PubMed ID: 32584998 [TBL] [Abstract][Full Text] [Related]
12. Structural assessment of OsNIP2;1 highlighted critical residues defining solute specificity and functionality of NIP class aquaporins. Sharma Y; Thakral V; Raturi G; Dutta Dubey K; Sonah H; Pareek A; Sharma TR; Deshmukh R J Adv Res; 2024 Apr; 58():1-11. PubMed ID: 37164213 [TBL] [Abstract][Full Text] [Related]
13. Understanding aquaporin transport system, silicon and other metalloids uptake and deposition in bottle gourd (Lagenaria siceraria). Kumawat S; Khatri P; Ahmed A; Vats S; Kumar V; Jaswal R; Wang Y; Xu P; Mandlik R; Shivaraj SM; Deokar A; Sonah H; Sharma TR; Deshmukh R J Hazard Mater; 2021 May; 409():124598. PubMed ID: 33234398 [TBL] [Abstract][Full Text] [Related]
14. Discovery of a multigene family of aquaporin silicon transporters in the primitive plant Equisetum arvense. Grégoire C; Rémus-Borel W; Vivancos J; Labbé C; Belzile F; Bélanger RR Plant J; 2012 Oct; 72(2):320-30. PubMed ID: 22712876 [TBL] [Abstract][Full Text] [Related]
15. An ancient genome duplication contributed to the abundance of metabolic genes in the moss Physcomitrella patens. Rensing SA; Ick J; Fawcett JA; Lang D; Zimmer A; Van de Peer Y; Reski R BMC Evol Biol; 2007 Aug; 7():130. PubMed ID: 17683536 [TBL] [Abstract][Full Text] [Related]
16. Light-harvesting antenna complexes in the moss Physcomitrella patens: implications for the evolutionary transition from green algae to land plants. Iwai M; Yokono M Curr Opin Plant Biol; 2017 Jun; 37():94-101. PubMed ID: 28445834 [TBL] [Abstract][Full Text] [Related]
17. Distinct transport selectivity of two structural subclasses of the nodulin-like intrinsic protein family of plant aquaglyceroporin channels. Wallace IS; Roberts DM Biochemistry; 2005 Dec; 44(51):16826-34. PubMed ID: 16363796 [TBL] [Abstract][Full Text] [Related]
18. Fascinating impact of silicon and silicon transporters in plants: A review. Gaur S; Kumar J; Kumar D; Chauhan DK; Prasad SM; Srivastava PK Ecotoxicol Environ Saf; 2020 Oct; 202():110885. PubMed ID: 32650140 [TBL] [Abstract][Full Text] [Related]
19. Silicon uptake and accumulation in higher plants. Ma JF; Yamaji N Trends Plant Sci; 2006 Aug; 11(8):392-7. PubMed ID: 16839801 [TBL] [Abstract][Full Text] [Related]
20. Exploring plant biodiversity: the Physcomitrella genome and beyond. Lang D; Zimmer AD; Rensing SA; Reski R Trends Plant Sci; 2008 Oct; 13(10):542-9. PubMed ID: 18762443 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]