These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 32710266)

  • 1. Bone's Response to Mechanical Loading in Aging and Osteoporosis: Molecular Mechanisms.
    Carina V; Della Bella E; Costa V; Bellavia D; Veronesi F; Cepollaro S; Fini M; Giavaresi G
    Calcif Tissue Int; 2020 Oct; 107(4):301-318. PubMed ID: 32710266
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical loading disrupts osteocyte plasma membranes which initiates mechanosensation events in bone.
    Yu K; Sellman DP; Bahraini A; Hagan ML; Elsherbini A; Vanpelt KT; Marshall PL; Hamrick MW; McNeil A; McNeil PL; McGee-Lawrence ME
    J Orthop Res; 2018 Feb; 36(2):653-662. PubMed ID: 28755471
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aging, Osteocytes, and Mechanotransduction.
    Hemmatian H; Bakker AD; Klein-Nulend J; van Lenthe GH
    Curr Osteoporos Rep; 2017 Oct; 15(5):401-411. PubMed ID: 28891009
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bone cell mechanosensitivity, estrogen deficiency, and osteoporosis.
    Klein-Nulend J; van Oers RF; Bakker AD; Bacabac RG
    J Biomech; 2015 Mar; 48(5):855-65. PubMed ID: 25582356
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Role of Connexin Channels in the Response of Mechanical Loading and Unloading of Bone.
    Riquelme MA; Cardenas ER; Xu H; Jiang JX
    Int J Mol Sci; 2020 Feb; 21(3):. PubMed ID: 32050469
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-level characterization of human femoral cortices and their underlying osteocyte network reveal trends in quality of young, aged, osteoporotic and antiresorptive-treated bone.
    Milovanovic P; Zimmermann EA; Riedel C; vom Scheidt A; Herzog L; Krause M; Djonic D; Djuric M; PĆ¼schel K; Amling M; Ritchie RO; Busse B
    Biomaterials; 2015 Mar; 45():46-55. PubMed ID: 25662494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sclerostin's role in bone's adaptive response to mechanical loading.
    Galea GL; Lanyon LE; Price JS
    Bone; 2017 Mar; 96():38-44. PubMed ID: 27742499
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiscale finite element modeling of mechanical strains and fluid flow in osteocyte lacunocanalicular system.
    Ganesh T; Laughrey LE; Niroobakhsh M; Lara-Castillo N
    Bone; 2020 Aug; 137():115328. PubMed ID: 32201360
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In Vivo Osteocyte Mechanotransduction: Recent Developments and Future Directions.
    Hinton PV; Rackard SM; Kennedy OD
    Curr Osteoporos Rep; 2018 Dec; 16(6):746-753. PubMed ID: 30406580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanosensitive Ca
    Morrell AE; Robinson ST; Silva MJ; Guo XE
    Connect Tissue Res; 2020; 61(3-4):389-398. PubMed ID: 31931640
    [No Abstract]   [Full Text] [Related]  

  • 11. Osteocyte Mechanobiology.
    Uda Y; Azab E; Sun N; Shi C; Pajevic PD
    Curr Osteoporos Rep; 2017 Aug; 15(4):318-325. PubMed ID: 28612339
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical loading and how it affects bone cells: the role of the osteocyte cytoskeleton in maintaining our skeleton.
    Klein-Nulend J; Bacabac RG; Bakker AD
    Eur Cell Mater; 2012 Sep; 24():278-91. PubMed ID: 23007912
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Osteocyte signaling in bone.
    Schaffler MB; Kennedy OD
    Curr Osteoporos Rep; 2012 Jun; 10(2):118-25. PubMed ID: 22552701
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in the osteocyte lacunocanalicular network with aging.
    Tiede-Lewis LM; Dallas SL
    Bone; 2019 May; 122():101-113. PubMed ID: 30743014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanobiology of the skeleton.
    Turner CH; Warden SJ; Bellido T; Plotkin LI; Kumar N; Jasiuk I; Danzig J; Robling AG
    Sci Signal; 2009 Apr; 2(68):pt3. PubMed ID: 19401590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The response of bone to mechanical loading and disuse: fundamental principles and influences on osteoblast/osteocyte homeostasis.
    Skerry TM
    Arch Biochem Biophys; 2008 May; 473(2):117-23. PubMed ID: 18334226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decreased pericellular matrix production and selection for enhanced cell membrane repair may impair osteocyte responses to mechanical loading in the aging skeleton.
    Hagan ML; Yu K; Zhu J; Vinson BN; Roberts RL; Montesinos Cartagena M; Johnson MH; Wang L; Isales CM; Hamrick MW; McNeil PL; McGee-Lawrence ME
    Aging Cell; 2020 Jan; 19(1):e13056. PubMed ID: 31743583
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms of osteocyte stimulation in osteoporosis.
    Verbruggen SW; Vaughan TJ; McNamara LM
    J Mech Behav Biomed Mater; 2016 Sep; 62():158-168. PubMed ID: 27203269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitric oxide signaling in mechanical adaptation of bone.
    Klein-Nulend J; van Oers RF; Bakker AD; Bacabac RG
    Osteoporos Int; 2014 May; 25(5):1427-37. PubMed ID: 24322479
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activation of Wnt Signaling by Mechanical Loading Is Impaired in the Bone of Old Mice.
    Holguin N; Brodt MD; Silva MJ
    J Bone Miner Res; 2016 Dec; 31(12):2215-2226. PubMed ID: 27357062
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.