These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 32710419)

  • 1. Live-Cell CRISPR Imaging in Plant Cells with a Telomere-Specific Guide RNA.
    Khosravi S; Dreissig S; Schindele P; Wolter F; Rutten T; Puchta H; Houben A
    Methods Mol Biol; 2020; 2166():343-356. PubMed ID: 32710419
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Live-cell CRISPR imaging in plants reveals dynamic telomere movements.
    Dreissig S; Schiml S; Schindele P; Weiss O; Rutten T; Schubert V; Gladilin E; Mette MF; Puchta H; Houben A
    Plant J; 2017 Aug; 91(4):565-573. PubMed ID: 28509419
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Live-Cell Imaging of Genomic Loci Using CRISPR/Molecular Beacon Hybrid Systems.
    Wu X; Ying Y; Mao S; Krueger CJ; Chen AK
    Methods Mol Biol; 2020; 2166():357-372. PubMed ID: 32710420
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pea early-browning virus-mediated genome editing via the CRISPR/Cas9 system in Nicotiana benthamiana and Arabidopsis.
    Ali Z; Eid A; Ali S; Mahfouz MM
    Virus Res; 2018 Jan; 244():333-337. PubMed ID: 29051052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Developing Heritable Mutations in Arabidopsis thaliana Using a Modified CRISPR/Cas9 Toolkit Comprising PAM-Altered Cas9 Variants and gRNAs.
    Yamamoto A; Ishida T; Yoshimura M; Kimura Y; Sawa S
    Plant Cell Physiol; 2019 Oct; 60(10):2255-2262. PubMed ID: 31198958
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR Guide RNA Design Guidelines for Efficient Genome Editing.
    Schindele P; Wolter F; Puchta H
    Methods Mol Biol; 2020; 2166():331-342. PubMed ID: 32710418
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long-term dual-color tracking of genomic loci by modified sgRNAs of the CRISPR/Cas9 system.
    Shao S; Zhang W; Hu H; Xue B; Qin J; Sun C; Sun Y; Wei W; Sun Y
    Nucleic Acids Res; 2016 May; 44(9):e86. PubMed ID: 26850639
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Comparison of Two Versions of the CRISPR-Sirius System for the Live-Cell Visualization of the Borders of Topologically Associating Domains.
    Viushkov VS; Lomov NA; Rubtsov MA
    Cells; 2024 Aug; 13(17):. PubMed ID: 39273012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A dynamic subpopulation of CRISPR-Cas overexpressers allows Streptococcus pyogenes to rapidly respond to phage.
    Stoltzfus MJ; Workman RE; Keith NC; Modell JW
    Nat Microbiol; 2024 Sep; 9(9):2410-2421. PubMed ID: 38997519
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of an inducer-free, virulence gene promoter-controlled, and fluorescent reporter-labeled CRISPR interference system in
    Miah R; Johannessen M; Kjos M; Lentz CS
    Microbiol Spectr; 2024 Oct; 12(10):e0060224. PubMed ID: 39162514
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Precise Regulation of Cas9-Mediated Genome Engineering by Anti-CRISPR-Based Inducible CRISPR Controllers.
    Jain S; Xun G; Abesteh S; Ho S; Lingamaneni M; Martin TA; Tasan I; Yang C; Zhao H
    ACS Synth Biol; 2021 Jun; 10(6):1320-1327. PubMed ID: 34006094
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expanding the CRISPR imaging toolset with Staphylococcus aureus Cas9 for simultaneous imaging of multiple genomic loci.
    Chen B; Hu J; Almeida R; Liu H; Balakrishnan S; Covill-Cooke C; Lim WA; Huang B
    Nucleic Acids Res; 2016 May; 44(8):e75. PubMed ID: 26740581
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Choosing CRISPR-based screens in cancer.
    Marx V
    Nat Methods; 2017 Mar; 14(4):343-346. PubMed ID: 28362439
    [No Abstract]   [Full Text] [Related]  

  • 14. Light-Inducible CRISPR Labeling.
    Hoffmann MD; Bubeck F; Niopek D
    Methods Mol Biol; 2020; 2173():137-150. PubMed ID: 32651915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A detailed cell-free transcription-translation-based assay to decipher CRISPR protospacer-adjacent motifs.
    Maxwell CS; Jacobsen T; Marshall R; Noireaux V; Beisel CL
    Methods; 2018 Jul; 143():48-57. PubMed ID: 29486239
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cas9 immunity creates challenges for CRISPR gene editing therapies.
    Crudele JM; Chamberlain JS
    Nat Commun; 2018 Aug; 9(1):3497. PubMed ID: 30158648
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational Analysis Concerning the Impact of DNA Accessibility on CRISPR-Cas9 Cleavage Efficiency.
    Chung CH; Allen AG; Sullivan NT; Atkins A; Nonnemacher MR; Wigdahl B; Dampier W
    Mol Ther; 2020 Jan; 28(1):19-28. PubMed ID: 31672284
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bacterial Genome Editing with CRISPR-Cas9: Taking Clostridium beijerinckii as an Example.
    Zhang ZT; Jiménez-Bonilla P; Seo SO; Lu T; Jin YS; Blaschek HP; Wang Y
    Methods Mol Biol; 2018; 1772():297-325. PubMed ID: 29754236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR/Pepper-tDeg: A Live Imaging System Enables Non-Repetitive Genomic Locus Analysis with One Single-Guide RNA.
    Chen M; Huang X; Shi Y; Wang W; Huang Z; Tong Y; Zou X; Xu Y; Dai Z
    Adv Sci (Weinh); 2024 Aug; 11(32):e2402534. PubMed ID: 38924638
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Site-specific targeting of a light activated dCas9-KillerRed fusion protein generates transient, localized regions of oxidative DNA damage.
    House NCM; Parasuram R; Layer JV; Price BD
    PLoS One; 2020; 15(12):e0237759. PubMed ID: 33332350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.